dc.creator | Martínez del Amor, Miguel Ángel | |
dc.creator | Karlin, Ian | |
dc.creator | Jensen, Rune E. | |
dc.creator | Pérez Jiménez, Mario de Jesús | |
dc.creator | Elster, Anne C. | |
dc.date.accessioned | 2016-02-04T10:21:33Z | |
dc.date.available | 2016-02-04T10:21:33Z | |
dc.date.issued | 2012 | |
dc.identifier.isbn | 978-84-940056-6-4 | es |
dc.identifier.uri | http://hdl.handle.net/11441/34057 | |
dc.description.abstract | Ecologists need to model ecosystems to predict how they will evolve over
time. Since ecosystems are non-deterministic phenomena, they must express the likelihood
of events occurring, and measure the uncertainty of their models' predictions. One
method well suited to these demands is Population Dynamic P systems (PDP systems, in
short), which is a formal framework based on multienvironment probabilistic P systems.
In this paper, we show how to parallelize a Population Dynamics P system simulator,
used to model biological systems, on multi-core processors, such as the Intel i5 Nehalem
and i7 Sandy Bridge. A comparison of three di erent techniques, discuss their strengths
and weaknesses, and evaluate their performance on two generations of Intel processors
with large memory sub-system di erences is presented. We show that P systems are
memory bound computations and future performance optimization e orts should focus
on memory tra c reductions. We achieve runtime gains of up to 2.5x by using all the
cores of a single socket 4-core Intel i7 built on the Sandy Bridge architecture. From our
analysis of these results we identify further ways to improve the runtime of our simulator. | es |
dc.description.sponsorship | Junta de Andalucía P08-TIC04200 | |
dc.description.sponsorship | Ministerio de Educación y Ciencia TIN2009-13192 | |
dc.format | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Fénix Editora | es |
dc.relation.ispartof | Proceedings of the Tenth Brainstorming Week on Membrane Computing, (2)17-26. Sevilla, E.T.S. de Ingeniería Informática, 30 de Enero-3 de Febrero, 2012, | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Population Dynamics | es |
dc.subject | P systems | es |
dc.subject | Parallel Simulation | es |
dc.subject | Multicore Computing | es |
dc.subject | OpenMP | es |
dc.title | Parallel Simulation of Probabilistic P Systems on Multicore Platforms | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dcterms.identifier | https://ror.org/03yxnpp24 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.contributor.affiliation | Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial | es |
dc.relation.projectID | P08-TIC04200 | |
dc.relation.projectID | TIN2009-13192 | |
dc.contributor.group | Universidad de Sevilla. TIC193: Computación Natural | |
dc.identifier.idus | https://idus.us.es/xmlui/handle/11441/34057 | |
dc.contributor.funder | Junta de Andalucía | |
dc.contributor.funder | Ministerio de Educación y Ciencia (MEC). España | |