Show simple item record

Presentation

dc.creatorMartínez del Amor, Miguel Ángel
dc.creatorKarlin, Ian
dc.creatorJensen, Rune E.
dc.creatorPérez Jiménez, Mario de Jesús
dc.creatorElster, Anne C.
dc.date.accessioned2016-02-04T10:21:33Z
dc.date.available2016-02-04T10:21:33Z
dc.date.issued2012
dc.identifier.isbn978-84-940056-6-4es
dc.identifier.urihttp://hdl.handle.net/11441/34057
dc.description.abstractEcologists need to model ecosystems to predict how they will evolve over time. Since ecosystems are non-deterministic phenomena, they must express the likelihood of events occurring, and measure the uncertainty of their models' predictions. One method well suited to these demands is Population Dynamic P systems (PDP systems, in short), which is a formal framework based on multienvironment probabilistic P systems. In this paper, we show how to parallelize a Population Dynamics P system simulator, used to model biological systems, on multi-core processors, such as the Intel i5 Nehalem and i7 Sandy Bridge. A comparison of three di erent techniques, discuss their strengths and weaknesses, and evaluate their performance on two generations of Intel processors with large memory sub-system di erences is presented. We show that P systems are memory bound computations and future performance optimization e orts should focus on memory tra c reductions. We achieve runtime gains of up to 2.5x by using all the cores of a single socket 4-core Intel i7 built on the Sandy Bridge architecture. From our analysis of these results we identify further ways to improve the runtime of our simulator.es
dc.description.sponsorshipJunta de Andalucía P08-TIC04200
dc.description.sponsorshipMinisterio de Educación y Ciencia TIN2009-13192
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherFénix Editoraes
dc.relation.ispartofProceedings of the Tenth Brainstorming Week on Membrane Computing, (2)17-26. Sevilla, E.T.S. de Ingeniería Informática, 30 de Enero-3 de Febrero, 2012,es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPopulation Dynamicses
dc.subjectP systemses
dc.subjectParallel Simulationes
dc.subjectMulticore Computinges
dc.subjectOpenMPes
dc.titleParallel Simulation of Probabilistic P Systems on Multicore Platformses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificiales
dc.relation.projectIDP08-TIC04200
dc.relation.projectIDTIN2009-13192
dc.contributor.groupUniversidad de Sevilla. TIC193: Computación Natural
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/34057
dc.contributor.funderJunta de Andalucía
dc.contributor.funderMinisterio de Educación y Ciencia (MEC). España

FilesSizeFormatViewDescription
parallel-dcba.pdf388.5KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional