Presentation
Bridging Membrane and Reaction Systems - Further Results and Research Topics
Author/s | Paun, Gheorghe
Pérez Jiménez, Mario de Jesús Rozenberg, Grzegorz |
Department | Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial |
Publication Date | 2013 |
Deposit Date | 2016-02-02 |
Published in |
|
ISBN/ISSN | 978-84-940691-9-2 |
Abstract | This paper continues an investigation into bridging two research areas con-
cerned with natural computing: membrane computing and reaction systems. More specif-
ically, the paper considers a transfer of two assumptions/axioms ... This paper continues an investigation into bridging two research areas con- cerned with natural computing: membrane computing and reaction systems. More specif- ically, the paper considers a transfer of two assumptions/axioms of reaction systems, non- permanency and the threshold assumption, into the framework of membrane computing. It is proved that: SN P systems with non-permanency of spikes assumption charac- terize the semilinear sets of numbers, and symport/antiport P systems with threshold assumption (translated as ! multiplicity of objects) can solve SAT in polynomial time. Also, several open research problems are stated. |
Funding agencies | Junta de Andalucía |
Project ID. | P08 – TIC 04200 |
Files | Size | Format | View | Description |
---|---|---|---|---|
243_paun_perez_rozenberg.pdf | 322.1Kb | [PDF] | View/ | |