Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Negatively Invariant Sets and Entire Solutions
Autor/es | Kloeden, Peter E.
Marín Rubio, Pedro |
Departamento | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico |
Fecha de publicación | 2011 |
Fecha de depósito | 2015-06-23 |
Publicado en |
|
Resumen | Negatively invariant compact sets of autonomous and nonautonomous dynamical systems on a metric space, the latter formulated in terms of processes, are shown to contain a strictly invariant set and hence entire solutions. ... Negatively invariant compact sets of autonomous and nonautonomous dynamical systems on a metric space, the latter formulated in terms of processes, are shown to contain a strictly invariant set and hence entire solutions. For completeness the positively invariant case is also considered. Both discrete and continuous time systems are considered. In the nonautonomous case, the various types of invariant sets are in fact families of subsets of the state space that are mapped onto each other by the process. A simple example shows the usefulness of the result for showing the occurrence of a bifurcation in a nonautonomous system. |
Cita | Kloeden, P.E. y Marín Rubio, P. (2011). Negatively Invariant Sets and Entire Solutions. Journal of Dynamics and Differential Equations, 23 (3), 437-450. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
file_1.pdf | 191.0Kb | [PDF] | Ver/ | |