Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.

Mostrar el registro sencillo del ítem

Artículo

dc.creatorMoreno Tejera, Saraes
dc.creatorSilva Pérez, Manuel Antonioes
dc.creatorRamírez Santigosa, Lourdeses
dc.creatorLillo Bravo, Isidoroes
dc.date.accessioned2024-09-28T12:57:41Z
dc.date.available2024-09-28T12:57:41Z
dc.date.issued2017-04
dc.identifier.issn0038-092Xes
dc.identifier.urihttps://hdl.handle.net/11441/163040
dc.description.abstractA methodology to classify days as a function of the state of the sky for Concentrated Solar Power (CSP) plant operation is proposed. For this purpose, three indexes are used to characterize the energy, variability and time distribution of the DNI and to define the type of days by means of clustering techniques. Two sets of indexes are tested and compared. The energy of days is represented by the transmittance index, kb. Two indexes are used to characterize the variability of the DNI: persistence index of the instantaneous kb values (POPD) and Variability Index (VI). Equivalent indexes have been previously used to classify the types of days using Global Horizontal Irradiation (GHI). A novel index to define the time distribution of the DNI daily energy is introduced. Clustering analysis is applied to thirteen years (2000–2012) of 10-min DNI measurements recorded in Seville (37.40°N, 6.01°W) by the Group of Thermodynamics and Renewable Energy (GTER) at the University of Seville. The k-medoids algorithm is used for cluster analysis. Through the use of well-known internal validity indexes and with the help of the L-method, the optimum number of clusters (types of days) is found to be 10. The results are compared with the assessment carried out by five experts on a reference set composed of DNI daily curves from two years (2010 and 2011). This comparison reveals a better coincidence when the clustering is performed using VI.es
dc.formatapplication/pdfes
dc.format.extent15 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectState of skyes
dc.subjectDNIes
dc.subjectTransmittance indexes
dc.subjectClustering techniqueses
dc.titleClassification of days according to DNI profiles using clustering techniqueses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Energéticaes
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0038092X1730124Xes
dc.identifier.doi10.1016/j.solener.2017.02.031es
dc.contributor.groupUniversidad de Sevilla. TEP122: Termodinámica y Energías Renovableses
dc.journaltitleSolar Energyes
dc.publication.volumen146es
dc.publication.initialPage319es
dc.publication.endPage333es

FicherosTamañoFormatoVerDescripción
SE_2017_Moreno_Classification_ ...2.863MbIcon   [PDF] Ver/Abrir   Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional