Mostrar el registro sencillo del ítem

Artículo

dc.creatorMateos Naranjo, Enriquees
dc.creatorPérez Romero, Jesús Albertoes
dc.creatorPuglielli, Giacomoes
dc.creatorLópez Jurado, Javieres
dc.creatorMesa Marín, Jenniferes
dc.creatorPajuelo Domínguez, Eloísaes
dc.creatorRodríguez Llorente, Ignacio Davides
dc.creatorRedondo Gómez, Susanaes
dc.date.accessioned2024-09-16T07:42:56Z
dc.date.available2024-09-16T07:42:56Z
dc.date.issued2023-11-08
dc.identifier.citationMateos Naranjo, E., Pérez Romero, J.A., Puglielli, G., López Jurado, J., Mesa Marín, J., Pajuelo Domínguez, E.,...,Redondo Gómez, S. (2023). Soil microorganisms buffer the reduction in plant growth and physiological performance under combined abiotic stress in the halophyte Salicornia ramosissima. Environmental and Experimental Botany, 217, 105550. https://doi.org/10.1016/j.envexpbot.2023.105550.
dc.identifier.issn0098-8472es
dc.identifier.issn1873-7307es
dc.identifier.urihttps://hdl.handle.net/11441/162501
dc.description.abstractThe impact of multifactorial abiotic stress combinations on plant functional responses remains controversial, and general patterns of response are yet to emerge. This knowledge gap is particularly relevant for species with innate tolerance to environmental stress. Using the halophyte Salicornia ramosissima as a model species, we performed a multifactorial study with 16 experimental scenarios that included or not beneficial microorganisms in order to quantify their impact on plant growth, photosynthetic performance, osmotic adjustment and ion homeostasis. The experimental scenarios were characterized by the combination of four factors with two levels (salinity: 171 and 510 mM NaCl; water stress: yes and no; temperature min/max range: 14/25 and 18/29ºC and atmospheric CO2 concentration: 400 and 700 ppm). A plant growth-promoting rhizobacteria (PGPR) consortium was used as a proxy for positive biological interaction. The results revealed that the multifactorial stress combinations triggered unique functional responses, depending on the stress factors involved. However, there was an overall more negative impact on plant functional traits under the most extreme scenario (i.e., 510 mM NaCl + water stress + high temperature). Interestingly, the presence of PGPR was able to reverse this negative influence, although this effect was negligible under non-stressful conditions. Furthermore, the positive effect of PGPR was even magnified when coexisting with elevated atmospheric CO2 concentration. This response is associated with mitigation of the negative impacts of suboptimal factor combinations on plant growth, photosynthetic performance/efficiency, and water/nutrient homeostasis. Therefore, we conclude that the positive impact of microorganisms on halophyte tolerance in complex environmental matrices would only be determinant under extreme conditions in which plant intrinsic tolerance mechanisms would not be sufficient. Remarkably, this effect could be accentuated by increasing atmospheric CO2 concentration.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación-AEI-FEDER PID2021-124750NB-I00, TED2021–131605B-I00, IJC2020–043331-I, PID2021–122214NA-I00es
dc.formatapplication/pdfes
dc.format.extent44 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofEnvironmental and Experimental Botany, 217, 105550.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCO2 enrichmentes
dc.subjectDroughtes
dc.subjectHalophytees
dc.subjectFunctional traitses
dc.subjectMultifactorial stress combinationes
dc.subjectRhizomicrobiomees
dc.subjectNaCl-stresses
dc.subjectTemperaturees
dc.titleSoil microorganisms buffer the reduction in plant growth and physiological performance under combined abiotic stress in the halophyte Salicornia ramosissimaes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Biología Vegetal y Ecologíaes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Microbiologíaes
dc.relation.projectIDPID2021-124750NB-I00es
dc.relation.projectIDTED2021–131605B-I00es
dc.relation.projectIDIJC2020–043331-Ies
dc.relation.projectIDPID2021–122214NA-I00es
dc.date.embargoEndDate2024-11-08
dc.relation.publisherversionhttps://dx.doi.org/10.1016/j.envexpbot.2023.105550es
dc.identifier.doi10.1016/j.envexpbot.2023.105550es
dc.journaltitleEnvironmental and Experimental Botanyes
dc.publication.volumen217es
dc.publication.initialPage105550es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderAgencia Estatal de Investigación. Españaes
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es

FicherosTamañoFormatoVerDescripción
EEB-D-23-00422_R2.pdf4.783MbIcon   [PDF] Este documento no está disponible a texto completo   hasta el  2024-11-08 . Para más información póngase en contacto con idus@us.es.Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional