Mostrar el registro sencillo del ítem

Artículo

dc.creatorReissig, Friederikees
dc.creatorRamírez Rico, Joaquínes
dc.creatorPlacke, Tobias Johanneses
dc.creatorWinter, Martines
dc.creatorSchmuch, Richardes
dc.creatorGómez Martín, Auroraes
dc.date.accessioned2024-07-01T14:41:58Z
dc.date.available2024-07-01T14:41:58Z
dc.date.issued2023
dc.identifier.citationReissig, F., Ramírez Rico, J., Placke, T.J., Winter, M., Schmuch, R. y Gómez Martín, A. (2023). The Role of Protective Surface Coatings on the Thermal Stability of Delithiated Ni-Rich Layered Oxide Cathode Materials. Batteries, 9 (5), 245. https://doi.org/10.3390/batteries9050245.
dc.identifier.issn2313-0105es
dc.identifier.urihttps://hdl.handle.net/11441/160998
dc.description.abstractTo achieve a broader public acceptance for electric vehicles based on lithium-ion battery (LIB) technology, long driving ranges, low cost, and high safety are needed. A promising pathway to address these key parameters lies in the further improvement of Ni-rich cathode materials for LIB cells. Despite the higher achieved capacities and thus energy densities, there are major drawbacks in terms of capacity retention and thermal stability (of the charged cathode) which are crucial for customer acceptance and can be mitigated by protecting cathode particles. We studied the impact of surface modifications on cycle life and thermal stability of LiNi0.90Co0.05Mn0.05O2 layered oxide cathodes with WO3 by a simple sol–gel coating process. Several advanced analytical techniques such as low-energy ion scattering, differential scanning calorimetry, and high-temperature synchrotron X-ray powder diffraction of delithiated cathode materials, as well as charge/discharge cycling give significant insights into the impact of surface coverage of the coatings on mitigating degradation mechanisms. The results show that successful surface modifications of WO3 with a surface coverage of only 20% can prolong the cycle life of an LIB cell and play a crucial role in improving the thermal stability and, hence, the safety of LIBs.es
dc.description.sponsorshipEuropean Union 875548es
dc.description.sponsorshipJunta de Andalucía P20-01186, US-1380856es
dc.description.sponsorshipMinisterio de Ciencia e Innovación PID2019-107019RB-I00es
dc.formatapplication/pdfes
dc.format.extent21 p.es
dc.language.isoenges
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)es
dc.relation.ispartofBatteries, 9 (5), 245.
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCathode materialses
dc.subjectLithium-ion batterieses
dc.subjectNickel-rich layered oxideses
dc.subjectSurface coveragees
dc.subjectThermal stabilityes
dc.titleThe Role of Protective Surface Coatings on the Thermal Stability of Delithiated Ni-Rich Layered Oxide Cathode Materialses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física de la Materia Condensadaes
dc.relation.projectID875548es
dc.relation.projectIDP20-01186es
dc.relation.projectIDUS-1380856es
dc.relation.projectIDPID2019-107019RB-I00es
dc.relation.publisherversionhttps://doi.org/10.3390/batteries9050245es
dc.identifier.doi10.3390/batteries9050245es
dc.journaltitleBatterieses
dc.publication.volumen9es
dc.publication.issue5es
dc.publication.initialPage245es
dc.contributor.funderEuropean Union (UE). H2020es
dc.contributor.funderJunta de Andalucíaes
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes

FicherosTamañoFormatoVerDescripción
The Role of Protective Surface ...3.352MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional