Mostrar el registro sencillo del ítem

Artículo

dc.creatorGutiérrez Ortiz, Francisco Javieres
dc.creatorLópez-Guirao, Franciscoes
dc.date.accessioned2024-06-14T07:29:28Z
dc.date.available2024-06-14T07:29:28Z
dc.date.issued2024
dc.identifier.issn2076-3417es
dc.identifier.urihttps://hdl.handle.net/11441/160497
dc.description© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license // This article belongs to the Section Energy Science and Technologyes
dc.description.abstractSolid biomass is usually simulated by decomposing it into a solid phase (carbon, ash, and sulfur) and a gas phase (water and diatomic molecules of H2, N2, O2, and Cl2) from the proximate and ultimate analysis before entering a reactor operating under chemical equilibrium when using Aspen Plus. However, this method prevents the use of energy integration for the feed stream from the system inlet to the reactor. This paper proposes an approach to solving this issue, considering biomass with both known and unknown chemical compositions; the latter involves the decomposition of biomass into complex molecular compounds. Different process arrangements were assessed to achieve a realistic simulation, and a sensitivity analysis was carried out to examine the effect of the concentration and heating upstream of the reactor, focused on supercritical water gasification (SCWG) of orange peel. This process is very energy-intensive, so the approach is useful for a better calculation of the energy requirement and exergy losses in a plant; these are usually and mainly related to the train of heat exchangers. In addition to this application to SCWG, this approach can be used for any other thermochemical process, such as gasification, pyrolysis, or combustion, and for any real biomass. Upon a base case study using a wet biomass of 10,000 kg/h with 90 wt.% water where the SCWG reaction takes place at 240 bar and 800º C, if the temperature at the SCWG reactor inlet increases from 350º C to 400º C, the heat exchange increases by 57% from 4 MW and by 34% if the water content decreases to 70 wt.%, although more heat relative to the solid is saved.es
dc.formatapplication/pdfes
dc.format.extent15 p.es
dc.language.isoenges
dc.publisherMDPIes
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSupercritical wateres
dc.subjectGasificationes
dc.subjectSimulationes
dc.subjectBiomasses
dc.subjectHeat integrationes
dc.subjectAspen pluses
dc.titleA Practical Approach to Using Energy Integration in the Simulation of Biomass Thermochemical Processes: Application to Supercritical Water Gasificationes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Química y Ambientales
dc.relation.projectIDP18-RT-2521es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/14/4/1577es
dc.identifier.doi10.3390/app14041577es
dc.contributor.groupUniversidad de Sevilla. TEP135:Ingeniería Ambiental y de Procesoes
dc.journaltitleApplied Scienceses
dc.publication.volumen14es
dc.publication.issue4es
dc.publication.initialPage1577es
dc.contributor.funderJunta de Andalucíaes

FicherosTamañoFormatoVerDescripción
AS_2024_A Practical_Gutierréz ...1.899MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional