Mostrar el registro sencillo del ítem

Artículo

dc.creatorSantana Andreo, Juliaes
dc.creatorMárquez Cruz, Antonio Marciales
dc.creatorPlata Ramos, José Javieres
dc.creatorBlancas, Ernesto J.es
dc.creatorGonzález Sánchez, José Luises
dc.creatorFernández Sanz, Javieres
dc.creatorNath, Pinkues
dc.date.accessioned2024-05-31T14:07:35Z
dc.date.available2024-05-31T14:07:35Z
dc.date.issued2024
dc.identifier.citationSantana Andreo, J., Márquez Cruz, A.M., Plata Ramos, J.J., Blancas, E.J., González Sánchez, J.L., Fernández Sanz, J. y Nath, P. (2024). High-Throughput Prediction of the Thermal and Electronic Transport Properties of Large Physical and Chemical Spaces Accelerated by Machine Learning: Charting the ZT of Binary Skutterudites. ACS Applied Materials and Interfaces, 16 (4), 4606-4617. https://doi.org/10.1021/acsami.3c15741.
dc.identifier.issn1944-8244es
dc.identifier.issn1944-8252es
dc.identifier.urihttps://hdl.handle.net/11441/159564
dc.description.abstractThermal and electronic transport properties are the keys to many technological applications of materials. Thermoelectric, TE, materials can be considered a singular case in which not only one but three different transport properties are combined to describe their performance through their TE figure of merit, ZT. Despite the availability of high-throughput experimental techniques, synthesizing, characterizing, and measuring the properties of samples with numerous variables affecting ZT are not a cost- or time-efficient approach to lead this strategy. The significance of computational materials science in discovering new TE materials has been running in parallel to the development of new frameworks and methodologies to compute the electron and thermal transport properties linked to ZT. Nevertheless, the trade-off between computational cost and accuracy has hindered the reliable prediction of TE performance for large chemical spaces. In this work, we present for the first time the combination of new ab initio methodologies to predict transport properties with machine learning and a high-throughput framework to establish a solid foundation for the accurate prediction of thermal and electron transport properties. This strategy is applied to a whole family of materials, binary skutterudites, which are well-known as good TE candidates. Following this methodology, it is possible not only to connect ZT with the experimental synthetic (carrier concentration and grain size) and operando (temperature) variables but also to understand the physical and chemical phenomena that act as driving forces in the maximization of ZT for p-type and n-type binary skutterudites.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación PID2019-106871GB-I00, TED2021- 130874B-I00es
dc.description.sponsorshipRed Española de Supercomputación QHS-2021-2-0022, QHS-2021-3-0025es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.relation.ispartofACS Applied Materials and Interfaces, 16 (4), 4606-4617.
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCarrierses
dc.subjectDFTes
dc.subjectGrainses
dc.subjectSkutteruditeses
dc.subjectThermoelectricses
dc.subjectTransport propertieses
dc.titleHigh-Throughput Prediction of the Thermal and Electronic Transport Properties of Large Physical and Chemical Spaces Accelerated by Machine Learning: Charting the ZT of Binary Skutteruditeses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Química Físicaes
dc.relation.projectIDPID2019-106871GB-I00es
dc.relation.projectIDTED2021- 130874B-I00es
dc.relation.projectIDQHS-2021-2-0022es
dc.relation.projectIDQHS-2021-3-0025es
dc.date.embargoEndDate2025-01
dc.relation.publisherversionhttps://doi.org/10.1021/acsami.3c15741es
dc.identifier.doi10.1021/acsami.3c15741es
dc.journaltitleACS Applied Materials and Interfaceses
dc.publication.volumen16es
dc.publication.issue4es
dc.publication.initialPage4606es
dc.publication.endPage4617es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderRed Española de Supercomputación (RES)es

FicherosTamañoFormatoVerDescripción
High-Throughput Prediction of ...6.019MbIcon   [PDF] Este documento no está disponible a texto completo   hasta el  2025-01 . Para más información póngase en contacto con idus@us.es.

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional