Mostrar el registro sencillo del ítem

Artículo

dc.creatorYanallah, Khelifaes
dc.creatorChelih, Aminees
dc.creatorBouazza, Mohamed Ridhaes
dc.creatorPontiga Romero, Francisco de Paulaes
dc.creatorBouadi, M.es
dc.creatorVázquez González, Pedro Ángeles
dc.date.accessioned2024-02-01T17:26:26Z
dc.date.available2024-02-01T17:26:26Z
dc.date.issued2023
dc.identifier.citationYanallah, K., Chelih, A., Bouazza, M.R., Pontiga Romero, F.d.P., Bouadi, M. y Vázquez González, P.Á. (2023). A new numerical approach for efficient modeling of positive corona discharge and its associated electric wind. Journal of Physics D: Applied Physics, 56 (415201), 1-22. https://doi.org/10.1088/1361-6463/ace456.
dc.identifier.issn0022-3727es
dc.identifier.issn1361-6463es
dc.identifier.urihttps://hdl.handle.net/11441/154443
dc.description.abstractResearch on corona wind generation has been increasing in recent years because of its potential technological applications, particularly those related to improving heat transfer in small-scale devices. Since numerical simulations play a key role in the design of these applications, computationally efficient modeling of corona discharge is imperative. This work presents a new approach that allows rapid computation of the electrohydrodynamic (EHD) force density responsible for the generation of electric wind. Arbitrary electrode configurations can easily be dealt with in the model, since only the Laplacian electric field lines have to be determined numerically. Then, using approximated analytical approximations of the electric field intensity along the field lines, the spatial distribution of the current density and the space charge density can be easily determined. The model has been satisfactorily tested against experimental measurements of the current–voltage characteristic and the current density distribution on the cathode. Furthermore, the electric wind computed from the EHD force agrees quite satisfactorily with measurements carried out in different electrode configurations. Finally, the model has been applied to a new electrode configuration that has greater potential for heat transfer applications.es
dc.formatapplication/pdfes
dc.format.extent22 p.es
dc.language.isoenges
dc.publisherIOP Publishinges
dc.relation.ispartofJournal of Physics D: Applied Physics, 56 (415201), 1-22.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCorona dischargees
dc.subjectNumerical modelinges
dc.subjectElectric windes
dc.titleA new numerical approach for efficient modeling of positive corona discharge and its associated electric windes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada IIes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada IIIes
dc.relation.projectIDPGC2018- 099217-B-I00es
dc.relation.projectIDMCIN/AEI/10.13039/501100011033es
dc.date.embargoEndDate
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/1361-6463/ace456es
dc.identifier.doi10.1088/1361-6463/ace456es
dc.contributor.groupUniversidad de Sevilla. FQM253: Electrohidronámica y Medios Granulares Cohesivoses
dc.journaltitleJournal of Physics D: Applied Physicses
dc.publication.volumen56es
dc.publication.issue415201es
dc.publication.initialPage1es
dc.publication.endPage22es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es

FicherosTamañoFormatoVerDescripción
-Acepted. A new numerical approach ...1.816MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional