Mostrar el registro sencillo del ítem

Artículo

dc.creatorBarrasa Fano, Jorgees
dc.creatorShapeti, Apekshaes
dc.creatorde Jong, J.es
dc.creatorRanga, A.es
dc.creatorSanz Herrera, José Antonioes
dc.creatorVan Oosterwyck, Hanses
dc.date.accessioned2024-01-22T11:44:51Z
dc.date.available2024-01-22T11:44:51Z
dc.date.issued2021-05
dc.identifier.citationBarrasa Fano, J., Shapeti, A., de Jong, J., Ranga, A., Sanz-Herrera, J.A. y Van Oosterwyck, H. (2021). Advanced in silico validation framework for three-dimensional Traction Force Microscopy and application to an in vitro model of sprouting angiogenesis. Acta Biomaterialia, 126, 326-338. https://doi.org/10.1016/j.actbio.2021.03.014.
dc.identifier.issn1742-7061es
dc.identifier.urihttps://hdl.handle.net/11441/153730
dc.description.abstractIn the last decade, cellular forces in three-dimensional hydrogels that mimic the extracellular matrix have been calculated by means of Traction Force Microscopy (TFM). However, characterizing the accuracy limits of a traction recovery method is critical to avoid obscuring physiological information due to traction recovery errors. So far, 3D TFM algorithms have only been validated using simplified cell geometries, bypassing image processing steps or arbitrarily simulating focal adhesions. Moreover, it is still uncertain which of the two common traction recovery methods, i.e., forward and inverse, is more robust against the inherent challenges of 3D TFM. In this work, we established an advanced in silico validation framework that is applicable to any 3D TFM experimental setup and that can be used to correctly couple the experimental and computational aspects of 3D TFM. Advancements relate to the simultaneous incorporation of complex cell geometries, simulation of microscopy images of varying bead densities and different focal adhesion sizes and distributions. By measuring the traction recovery error with respect to ground truth solutions, we found that while highest traction recovery errors occur for cases with sparse and small focal adhesions, our implementation of the inverse method improves two-fold the accuracy with respect to the forward method (average error of 23% vs. 50%). This advantage was further supported by recovering cellular tractions around angiogenic sprouts in an in vitro model of angiogenesis. The inverse method recovered higher traction peaks and a clearer pulling pattern at the sprout protrusion tips than the forward method. Statement of significance: Biomaterial performance is often studied by quantifying cell-matrix mechanical interactions by means of Traction Force Microscopy (TFM). However, 3D TFM algorithms are often validated in simplified scenarios, which do not allow to fully assess errors that could obscure physiological information. Here, we established an advanced in silico validation framework that mimics real TFM experimental conditions and that characterizes the expected errors of a 3D TFM workflow. We apply this framework to demonstrate the enhanced accuracy of a novel inverse traction recovery method that is illustrated in the context of an in vitro model of sprouting angiogenesis. Together, our study shows the importance of a proper traction recovery method to minimise errors and the need for an advanced framework to assess those errors. © 2021 Acta Materialia Inc.es
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte CAS17/0 0 096es
dc.description.sponsorshipMinisterio de Economía y Competitividad PGC2018-097257-B-C31es
dc.description.sponsorshipEuropean Research Council FP7/2007–2013 308223es
dc.formatapplication/pdfes
dc.format.extent13 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofActa Biomaterialia, 126, 326-338.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAngiogenesises
dc.subjectCell mechanicses
dc.subjectComputational mechanicses
dc.subjectDigital image analysises
dc.subjectForward and inverse methodologieses
dc.subjectTraction force microscopyes
dc.titleAdvanced in silico validation framework for three-dimensional Traction Force Microscopy and application to an in vitro model of sprouting angiogenesises
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDCAS17/0 0 096es
dc.relation.projectIDPGC2018-097257-B-C31es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1742706121001550es
dc.identifier.doi10.1016/j.actbio.2021.03.014es
dc.contributor.groupUniversidad de Sevilla. TEP245: Ingeniería de las Estructurases
dc.journaltitleActa Biomaterialiaes
dc.publication.volumen126es
dc.publication.initialPage326es
dc.publication.endPage338es
dc.contributor.funderMinisterio de Educación, Cultura y Deporte (MECD). Españaes
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). Españaes
dc.contributor.funderEuropean Research Council (ERC)es

FicherosTamañoFormatoVerDescripción
AB_2021_Barrasa_Sanz-Herrera_A ...57.53MbIcon   [PDF] Ver/Abrir   Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional