Mostrar el registro sencillo del ítem

Ponencia

dc.creatorRodríguez de Arriba, Pablo Enriquees
dc.creatorCrespi, Francesco Mariaes
dc.creatorSánchez Martínez, David Tomáses
dc.creatorGarcía Rodríguez, Lourdeses
dc.date.accessioned2023-12-11T10:43:57Z
dc.date.available2023-12-11T10:43:57Z
dc.date.issued2023-09
dc.identifier.citationRodríguez de Arriba, P.E., Crespi, F.M., Sánchez Martínez, D.T. y García Rodríguez, L. (2023). Assessment of Part-Load Operation Strategies of Supercritical Power Cycles Using Carbon Dioxide Mixtures in CSP Plants, Including Air-Cooled Condenser Optimisation. En ASME Turbo Expo: Turbomachinery Technical Conference and Exposition (V012t28a026), Boston, Massachusetts, USA: American Society of Mechanical Engineers (ASME).
dc.identifier.isbn978-079188707-3es
dc.identifier.urihttps://hdl.handle.net/11441/152335
dc.descriptionProceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 12: Cycle Innovations. Boston, Massachusetts, USA. June 26–30es
dc.description.abstractThis manuscript, developed in the framework of SCARABEUS project, presents an assessment of the part-load performance of a transcritical Recompression cycle running on a 80%CO2-20%SO2 mixture under different load-control schemes. The first part of the paper describes the computational platform of the integrated system, implemented in Thermoflex but with profuse use of in-house scripts, in order to accurately describe the off-design performance of key components when operating on CO2 mixtures with non-ideal gas behaviour. These off-design models make use of performance maps for turbomachinery -provided by the SCARABEUS partners- whereas the Conductance Ratio Method employed to model the counter-current heat exchangers is calibrated with in-house tools. The paper is specifically focused on the Heat Rejection Unit, for which a specific design tool accounting for accurate heat transfer between working fluid and cooling medium (air) and for auxiliary power consumption -both in off-design- has been developed by the authors. In the second part of the paper, different operating strategies of the power cycle are considered, based on keeping one of the following three parameters constant: turbine inlet temperature, turbine outlet temperature or return temperature of molten salts. Globally, plant operation is constrained by the need to keep the temperature of cold HTF returning to the storage system as close as possible to its rated (design) value and by the need to keep turbine outlet temperature below 450ºC to avoid the installation of an external cooling system in the low pressure section of this equipment. Therefore, the trade-off between these two parameters and system net efficiency are assessed in the paper. Regarding the Air-Cooled Condenser, the optimal operation strategy of this component found to be based on a combination of Single-speed and Variable Frequency Driver fans. The results show that the operation at constant turbine inlet temperature leads to the highest net efficiency of the power block, closely followed by the control scheme based on constant return temperature of the heat transfer fluid. Nevertheless, this latter option enables a perfect control on the other two figures of merit. As a consequence, the identification of the best operation strategy must be addressed in future works by means of a thorough techno-economic assessment considering the annual yield of the plant.es
dc.description.sponsorshipUnión Europea Horizonte 2020 814985es
dc.description.sponsorshipMinisterio de Universidades FPU21/04892es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherAmerican Society of Mechanical Engineers (ASME)es
dc.relation.ispartofASME Turbo Expo: Turbomachinery Technical Conference and Exposition (2023), pp. V012t28a026..
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAssessment of Part-Load Operation Strategies of Supercritical Power Cycles Using Carbon Dioxide Mixtures in CSP Plants, Including Air-Cooled Condenser Optimisationes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Energéticaes
dc.relation.projectID814985es
dc.relation.projectIDFPU21/04892es
dc.relation.publisherversionhttps://asmedigitalcollection.asme.org/GT/proceedings/GT2023/87073/V012T28A026/1168399es
dc.identifier.doi10.1115/GT2023-103665es
dc.contributor.groupUniversidad de Sevilla. TEP137: Maquinas y Motores Térmicoses
dc.publication.initialPageV012t28a026es
dc.eventtitleASME Turbo Expo: Turbomachinery Technical Conference and Expositiones
dc.eventinstitutionBoston, Massachusetts, USAes
dc.relation.publicationplaceNew Yorkes
dc.contributor.funderEuropean Union (UE). H2020es
dc.contributor.funderMinisterio de Universidades. Españaes

FicherosTamañoFormatoVerDescripción
ASMETE2023_Sanchez-Martinez_As ...3.869MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional