Mostrar el registro sencillo del ítem

Artículo

dc.creatorSangaletti, Simonees
dc.creatorMitrou, Anatolies
dc.creatorGarcía García, Israeles
dc.creatorArteiro, Albertinoes
dc.date.accessioned2023-09-19T08:48:01Z
dc.date.available2023-09-19T08:48:01Z
dc.date.issued2023-10
dc.identifier.citationSangaletti, S., Mitrou, A., García García, I. y Arteiro, A. (2023). Effect of tailored fiber deposition in 3D printed composites: application of an anisotropic phase field model. Theoretical and Applied Fracture Mechanics, 127 (104030). https://doi.org/10.1016/j.tafmec.2023.104030.
dc.identifier.issn0167-8442es
dc.identifier.issn1872-7638es
dc.identifier.urihttps://hdl.handle.net/11441/148997
dc.description.abstractContinuous Fiber 3D printing is a relatively new technology which can allow for tailored reinforcement of critical regions in structural components, i.e., stress concentrations, following principal stress lines. The influence the fiber deposition path has on the mechanical and failure behavior of such components is assessed using an anisotropic phase field model. A comparison with experimental results for notched unidirectional composite plates, available in the literature, demonstrates the ability of the method to produce satisfactory predictions for unidirectional reinforcement paths. The analysis is then extended to Open-Hole and Double Edge-Notched tension coupons of both unidirectional and variable stiffness reinforcement patterns. It is observed that the strength obtained for the components made with a reinforcement pattern that follows the principal stress lines is markedly higher than that for the equivalent unidirectionally reinforced ones. It is highlighted that the improvement in strength deriving from the tailored fiber deposition cannot be deduced solely by the analysis of the stress concentration factor but an analysis taking damage into account is necessary. In addition, the effect of the reinforcement strategy on the size effect was also explored, highlighting how the tailored fiber path leads to an increase in the failure load attainable by the specimens for all the dimensions analyzed.es
dc.formatapplication/pdfes
dc.format.extent9 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofTheoretical and Applied Fracture Mechanics, 127 (104030).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFracturees
dc.subjectComputational mechanicses
dc.subjectAnisotropyes
dc.subject3D printinges
dc.titleEffect of tailored fiber deposition in 3D printed composites: application of an anisotropic phase field modeles
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDEU H2020 No. 861061es
dc.relation.projectIDPID2020-117001 GB-I00es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0167844223002938es
dc.identifier.doi10.1016/j.tafmec.2023.104030es
dc.contributor.groupUniversidad de Sevilla. TEP131: Elasticidad y Resistencia de Materialeses
dc.journaltitleTheoretical and Applied Fracture Mechanicses
dc.publication.volumen127es
dc.publication.issue104030es
dc.contributor.funderEuropean Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 861061es
dc.contributor.funderSpanish Ministry of Science and Innovation Project PID2020-117001 GB-I00es

FicherosTamañoFormatoVerDescripción
TAFM_sanganetti_2023_effect.pdf2.437MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional