Mostrar el registro sencillo del ítem

Artículo

dc.creatorGarcía Casas, Xabieres
dc.creatorAparicio Rebollo, Francisco Javieres
dc.creatorBudagosky Marcilla, Jorge Alejandroes
dc.creatorGhaffarinejad, Alies
dc.creatorOrozco-Corrales, Noeles
dc.creatorOstrikov, Kostyaes
dc.creatorSánchez Valencia, Juan Ramónes
dc.creatorBarranco Quero, Ángeles
dc.creatorBorrás, Anaes
dc.date.accessioned2023-09-04T08:00:34Z
dc.date.available2023-09-04T08:00:34Z
dc.date.issued2023-09
dc.identifier.citationGarcía Casas, X., Aparicio Rebollo, F.J., Budagosky Marcilla, J.A., Ghaffarinejad, A., Orozco-Corrales, N., Ostrikov, K.,...,Borrás, A. (2023). Paper-based ZnO self-powered sensors and nanogenerators by plasma technology. Nano Energy, 114 (108686). https://doi.org/10.1016/j.nanoen.2023.108686.
dc.identifier.issn2211-2855es
dc.identifier.issn2211-3282es
dc.identifier.urihttps://hdl.handle.net/11441/148602
dc.description.abstractNanogenerators and self-powered nanosensors have shown the potential to power low-consumption electronics and human-machine interfaces, but their practical implementation requires reliable, environmentally friendly and scalable processes for manufacturing and processing. Furthermore, the emerging flexible and wearable electronics technology demands direct fabrication onto innovative substrates such as paper and plastics typically incompatible with high process temperatures. This article presents a plasma synthesis approach for the fabrication of piezoelectric nanogenerators (PENGs) and self-powered sensors on paper substrates. Polycrystalline ZnO nanocolumnar thin films are deposited by plasma-enhanced chemical vapour deposition on common paper supports using a microwave electron cyclotron resonance reactor working at room temperature yielding high growth rates and low structural and interfacial stresses. Applying Kinetic Monte Carlo simulation, we elucidate the basic shadowing mechanism behind the characteristic microstructure and porosity of the ZnO thin films, relating them to an enhanced piezoelectric response to periodic and random inputs. The piezoelectric devices are assembled by embedding the ZnO films in polymethylmethacrylate (PMMA) and using Au thin layers as electrodes in two different configurations, namely laterally and vertically contacted devices. We present the response of the laterally connected devices as a force sensor for low-frequency events with different answers to the applied force depending on the impedance circuit, i.e. load values range, a behaviour that is theoretically analyzed. The characterization of the vertical devices in cantilever-like mode reaches instantaneous power densities of 80 nW/cm2 with a mean power output of 20 nW/cm2. Besides, we analyze their actual-scenario performance by activation with a fan and handwriting. Overall, this work demonstrates the advantages of implementing plasma deposition for piezoelectric films to develop robust, flexible, stretchable, and enhanced-performance nanogenerators and self-powered piezoelectric sensors compatible with inexpensive and recyclable supports.es
dc.formatapplication/pdfes
dc.format.extent13 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofNano Energy, 114 (108686).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectZnOes
dc.subjectPlasmaes
dc.subjectPaperes
dc.subjectPiezoelectric nanosensores
dc.subjectPiezoelectric nanogeneratores
dc.titlePaper-based ZnO self-powered sensors and nanogenerators by plasma technologyes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada Ies
dc.relation.projectIDPID2019-109603RA-I00es
dc.relation.projectIDTED2021-130916B-I00es
dc.relation.projectIDPID2019-110430GB-C21es
dc.relation.projectIDPAIDI-2020 US-1381057es
dc.relation.projectIDEU H2020 851929es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2211285523005232es
dc.identifier.doi10.1016/j.nanoen.2023.108686es
dc.contributor.groupUniversidad de Sevilla. FQM196: Nanotecnología en Superficies y Plasmaes
dc.journaltitleNano Energyes
dc.publication.volumen114es
dc.publication.issue108686es
dc.contributor.funderMCIN/AEI/10.13039/501100011033 and by ERDF (FEDER) PID2019-109603RA-I00es
dc.contributor.funderMCIN/AEI/10.13039/501100011033 and by ERDF (FEDER) TED2021-130916B-I00es
dc.contributor.funderMCIN/AEI/10.13039/501100011033 and by ERDF (FEDER) PID2019-110430GB-C21es
dc.contributor.funderConsejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía PAIDI-2020 through project US-1381057es
dc.contributor.funderEU H2020 program under grant agreement 851929es

FicherosTamañoFormatoVerDescripción
NE_aparicio-rebollo_2023_paper ...11.51MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional