Mostrar el registro sencillo del ítem

Artículo

dc.creatorGonzález García, Heliodoroes
dc.creatorGarcía García, Francisco Javieres
dc.creatorCastellanos, Antonioes
dc.date.accessioned2023-07-14T10:39:17Z
dc.date.available2023-07-14T10:39:17Z
dc.date.issued2003-02
dc.identifier.citationGonzález García, H., García García, F.J. y Castellanos, A. (2003). Stability analysis of conducting jets under ac radial electric fields for arbitrary viscosity. Physics of Fluids, 15 (2), 395-407. https://doi.org/10.1063/1.1529659.
dc.identifier.issn1070-6631 (impreso)es
dc.identifier.issn1089-7666 (online)es
dc.identifier.urihttps://hdl.handle.net/11441/147984
dc.description.abstractA temporal linear modal stability analysis is presented for conducting viscous liquid jets flowing with nonzero velocity relative to an ambient gas and subjected to an ac radial electric field. Parametric resonance between natural dc frequencies and the frequency (or multiple) of the imposed ac field eventually leads to destabilization of the jet for perturbations with wave numbers in the stable domain. In this way, it is possible to obtain drops of smaller size. The main result is the extension of the stability analysis to liquids of arbitrary viscosity using a dynamical approach, instead of previous variational models valid for slightly viscous liquids. The effect of the outer gas in relative motion is taken into account in the framework of currently available semiempirical theories. A brief discussion of the dispersion relation for dc fields is included as the natural starting point for the discussion of the ac case. Use of the 1-D averaged model for axisymmetric perturbations, an alternative to the 3-D approach, allows a complete determination, in this particular case, of the distribution and nature of roots of the dispersion relation in the complex plane. The theoretical study presented here is ready to be compared to future experiments in the Rayleigh and first wind-induced regime, as no relevant instability mechanisms have been excluded; namely, capillary instability, viscous damping, quasi-electrostatic pressure effects, Kelvin–Helmholtz instability corrected to account for the gas viscosity, and finally, parametric resonance.es
dc.description.sponsorshipMinisterio de Ciencia y Tecnología BFM2000-1056es
dc.formatapplication/pdfes
dc.format.extent13es
dc.language.isoenges
dc.publisherAIP Publishinges
dc.relation.ispartofPhysics of Fluids, 15 (2), 395-407.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectric fieldses
dc.subjectDispersion functiones
dc.subjectApproximation methodses
dc.subjectFlow instabilitieses
dc.subjectViscous liquides
dc.titleStability analysis of conducting jets under ac radial electric fields for arbitrary viscosityes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada Ies
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada IIIes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Electrónica y Electromagnetismoes
dc.relation.projectIDBFM2000-1056es
dc.relation.publisherversionhttps://pubs.aip.org/aip/pof/article/15/2/395/254939/Stability-analysis-of-conducting-jets-under-aces
dc.identifier.doi10.1063/1.1529659es
dc.journaltitlePhysics of Fluidses
dc.publication.volumen15es
dc.publication.issue2es
dc.publication.initialPage395es
dc.publication.endPage407es
dc.contributor.funderMinisterio de Ciencia Y Tecnología (MCYT). Españaes

FicherosTamañoFormatoVerDescripción
395_1_online-2-14.pdf346.4KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional