Mostrar el registro sencillo del ítem

Artículo

dc.creatorCarrasco Mantis, Anaes
dc.creatorRandelovic, Teodoraes
dc.creatorCastro Abril, Héctores
dc.creatorOchoa Garrido, Ignacioes
dc.creatorDoblaré Castellano, Manueles
dc.creatorSanz Herrera, José Antonioes
dc.date.accessioned2023-06-26T17:19:49Z
dc.date.available2023-06-26T17:19:49Z
dc.date.issued2023
dc.identifier.citationCarrasco Mantis, A., Randelovic, T., Castro Abril, H., Ochoa Garrido, I., Doblaré Castellano, M. y Sanz Herrera, J.A. (2023). A mechanobiological model for tumor spheroid evolution with application to glioblastoma: A continuum multiphysics approach. Computers in Biology and Medicine, 159, 106897. https://doi.org/10.1016/j.compbiomed.2023.106897.
dc.identifier.issn0010-4825es
dc.identifier.urihttps://hdl.handle.net/11441/147498
dc.descriptionThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)es
dc.description.abstractBackground: Spheroids are in vitro quasi-spherical structures of cell aggregates, eventually cultured within a hydrogel matrix, that are used, among other applications, as a technological platform to investigate tumor formation and evolution. Several interesting features can be replicated using this methodology, such as cell communication mechanisms, the effect of gradients of nutrients, or the creation of realistic 3D biological structures. The main objective of this work is to link the spheroid evolution with the mechanical activity of cells, coupled with nutrient consumption and the subsequent cell dynamics. Method: We propose a continuum mechanobiological model which accounts for the most relevant phenomena that take place in tumor spheroid evolution under in vitro suspension, namely, nutrient diffusion in the spheroid, kinetics of cellular growth and death, and mechanical interactions among the cells. The model is qualitatively validated, after calibration of the model parameters, versus in vitro experiments of spheroids of different glioblastoma cell lines. Results: Our model is able to explain in a novel way quite different setups, such as spheroid growth (up to six times the initial configuration for U-87 MG cell line) or shrinking (almost half of the initial configuration for U-251 MG cell line); as the result of the mechanical interplay of cells driven by cellular evolution. Conclusions: Glioblastoma tumor spheroid evolution is driven by mechanical interactions of the cell aggregate and the dynamical evolution of the cell population. All this information can be used to further investigate mechanistic effects in the evolution of tumors and their role in cancer disease.es
dc.formatapplication/pdfes
dc.format.extent17 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofComputers in Biology and Medicine, 159, 106897.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCellular spheroides
dc.subjectGlioblastomaes
dc.subjectMechanobiologyes
dc.subjectNumerical simulationes
dc.subjectFinite element methodes
dc.titleA mechanobiological model for tumor spheroid evolution with application to glioblastoma: A continuum multiphysics approaches
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDPGC2018-097257-B-C31es
dc.relation.projectIDPRE2019-090391es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0010482523003621?ref=pdf_download&fr=RR-2&rr=7dd710bc3cde218ces
dc.identifier.doi10.1016/j.compbiomed.2023.106897es
dc.contributor.groupUniversidad de Sevilla. TEP245: Ingeniería de las Estructurases
dc.journaltitleComputers in Biology and Medicinees
dc.publication.volumen159es
dc.publication.initialPage106897es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderAgencia Estatal de Investigación. Españaes
dc.contributor.funderFondo Europeo de Desarrollo Regional (FEDER)es
dc.contributor.funderGobierno de Aragónes
dc.contributor.funderCentro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)es

FicherosTamañoFormatoVerDescripción
CBM_2023_A-mechanobiological_C ...2.788MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional