Show simple item record

Article

dc.creatorAranda Romero, María Teresaes
dc.creatorReinoso Cuevas, José Antonioes
dc.creatorAranda Romero, María Teresaes
dc.date.accessioned2023-06-06T15:35:09Z
dc.date.available2023-06-06T15:35:09Z
dc.date.issued2022-12
dc.identifier.citationAranda Romero, M.T., Reinoso Cuevas, J.A. y Aranda Romero, M.T. (2022). On different 3D printing methods and fracture performance in DCB composite specimens including structured interfaces. Theoretical and Applied Fracture Mechanics, 122, 103552. https://doi.org/10.1016/j.tafmec.2022.103552.
dc.identifier.issn0167-8442es
dc.identifier.urihttps://hdl.handle.net/11441/146980
dc.descriptionThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)es
dc.description.abstractThis work experimentally analyzes the influence of the printing direction on the fracture resistance capabilities of composite specimens incorporating structured interfaces in their geometrical definition. In particular, we compare horizontal and vertical direction fiber deposition using 3D printing capabilities in order to identify the best scenarios that maximize the corresponding fracture performances. For this purpose, DCB specimens including improved structured interfaces designed with fiber in the profile region of the specimen are produced. These designs were created using 3D printing in long fiber composites. Experimental evidences reveal a remarkable increase in fracture toughness in structured interface profiles printed in the vertical direction compared to structured interface profiles printed in the horizontal direction, specifically 217% for the best configuration and 118% for the most unfavorable configuration. Present results show the potential benefits for the generation of novel design concepts with improvements in fracture resistance capabilities, fostering new perspectives in the definition of composite structures.es
dc.formatapplication/pdfes
dc.format.extent15 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofTheoretical and Applied Fracture Mechanics, 122, 103552.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiomimetic interfaceses
dc.subjectStructured interfaceses
dc.subject3D printinges
dc.subjectFracture toughnesses
dc.subjectComposite materialses
dc.titleOn different 3D printing methods and fracture performance in DCB composite specimens including structured interfaceses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDP20-00595es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0167844222002968es
dc.identifier.doi10.1016/j.tafmec.2022.103552es
dc.contributor.groupUniversidad de Sevilla. TEP131: Elasticidad y Resistencia de Materialeses
dc.journaltitleTheoretical and Applied Fracture Mechanicses
dc.publication.volumen122es
dc.publication.initialPage103552es
dc.contributor.funderConsejería de Economía y Conocimiento. Junta de Andalucíaes
dc.contributor.funderFondo Europeo de Desarrollo Regional (FEDER)es

FilesSizeFormatViewDescription
TAFM_2022_Aranda_On-different- ...4.868MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional