Presentation
A quantitative methodology to identify related features in data sets
Author/s | Álvarez, Miguel Ángel
González Abril, Luis Ortega Ramírez, Juan Antonio Soria Morillo, Luis Miguel Cuberos Gallardo, Francisco José |
Department | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos Universidad de Sevilla. Departamento de Economía Aplicada I |
Publication Date | 2011-06 |
Deposit Date | 2023-05-24 |
Published in |
|
ISBN/ISSN | 978-84-615-5513-0 |
Abstract | In this paper, a methodology which quantifies the dependence beteen features in a data set is developed. This methodology uses the Ameva discretization algorithm. In particular, it uses the Ameva coefficient to quantify ... In this paper, a methodology which quantifies the dependence beteen features in a data set is developed. This methodology uses the Ameva discretization algorithm. In particular, it uses the Ameva coefficient to quantify the dependece. Furthermore, a new coefficient called entropy has been proposed for cases where it is not possible to apply the Ameva discretization algorithm. Thus, different matrices of inter-dependence are built provinding a grade of dependence between two features. Finally, to verify the qualitiews of this methodology, a simple method to discard features base don it is applied to a well-known data set in a classification process and promising results for the carried out system are obtained. |
Funding agencies | Ministerio de Ciencia e Innovación (MICIN). España |
Project ID. | TIN2009-14378-C02-01 |
Citation | Álvarez, M.Á., González Abril, L., Ortega Ramírez, J.A., Soria Morillo, L.M. y Cuberos Gallardo, F.J. (2011). A quantitative methodology to identify related features in data sets. En XIII Jornadas de ARCA: Sistemas Cualitativos y sus Aplicaciones en Diagnosis, Robótica e Inteligencia Ambiental (JARCA 2011) (39-43), Huelva, España: Universidad de Sevilla. |
Files | Size | Format | View | Description |
---|---|---|---|---|
A quantitative methodology.pdf | 4.714Mb | [PDF] | View/ | |