Mostrar el registro sencillo del ítem

Artículo

dc.creatorSalah, Salma I.es
dc.creatorCrespi, Francesco Mariaes
dc.creatorWhite, Martin T.es
dc.creatorMuñoz Blanco, Antonioes
dc.creatorPaggini, Andreaes
dc.creatorRuggiero, Marcoes
dc.creatorSánchez Martínez, David Tomáses
dc.creatorSayma, Abdulnaser I.es
dc.date.accessioned2023-05-15T14:34:22Z
dc.date.available2023-05-15T14:34:22Z
dc.date.issued2023-04-26
dc.identifier.issn1873-5606es
dc.identifier.urihttps://hdl.handle.net/11441/146035
dc.description.abstractThe utilisation of certain blends based on supercritical CO2 (sCO2), namely CO2/TiCl4, CO2/C6F6 and CO2/SO2, have been found to be promising for enhancing the performance of power cycles for Concentrated Solar Power (CSP) applications; allowing for up to a 6% enhancement in cycle efficiency with respect to a simple recuperated CO2 cycle, depending upon the nature of the used blend and the cycle configuration of choice. This paper presents an investigation of the impact of adopting these sCO2-based blends on the flow path design for a multi-stage axial turbine whilst accounting for aerodynamic, mechanical and rotordynamic considerations. This includes assessing the sensitivity of the turbine design to selected working fluid and imposed optimal cycle conditions. Ultimately, this study aims to provide the first indication that a high-efficiency turbine can be achieved for a large-scale axial turbine operating with these non-conventional working fluids and producing power in excess of 120 MW. To achieve this aim, mean-line aerodynamic design is integrated with mechanical and rotordynamic constraints, specified based on industrial experience, to ensure technically feasible solutions with maximum aerodynamic efficiency. Different turbine flow path designs have been produced for three sCO2 blends under different cycle boundary conditions. Specifically, flow paths have been obtained for optimal cycle configurations at five different molar fractions and two different turbine inlet pressure and temperature levels of 250 & 350 bar and 550 & 700 °C respectively. A total-to-total turbine efficiency in excess of 92% was achieved, which is considered promising for the future of CO2 plants. The highest efficiencies are achieved for designs with a large number of stages, corresponding to reduced hub diameters due to the need for a fixed synchronous rotational speed. The large number of stages is contrary to existing sCO2 turbine designs, but it is found that an increase from 4 to 14 stages can increase the efficiency by around 5%. Ultimately, based on the preliminary cost analysis results, the designs with a large number of stages showed to be financially feasible compared to the designs with a small number of stages.es
dc.description.sponsorshipUnión Europea - Grant Agrement No. H2020-814985es
dc.formatapplication/pdfes
dc.format.extent23es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAxial turbine, CO2 cycles, Mean-line design, CO2-blends, Flow path designes
dc.titleAxial turbine flow path design for concentrated solar power plants operating with CO2 blendses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Energéticaes
dc.relation.projectIDH2020-814985es
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2023.120612es
dc.contributor.groupUniversidad de Sevilla. TEPP137: Máquinas y Motores Térmicoses
dc.journaltitleApplied Thermal Engineeringes
dc.publication.volumen230es
dc.publication.initialPage120612es
dc.contributor.funderComisión Europeaes

FicherosTamañoFormatoVerDescripción
Published paper.pdf3.464MbIcon   [PDF] Ver/Abrir   Artículo principal

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional