Mostrar el registro sencillo del ítem

Artículo

dc.creatorCarrasco Mantis, Anaes
dc.creatorAlarcón, T.es
dc.creatorSanz Herrera, José Antonioes
dc.date.accessioned2023-04-20T09:47:41Z
dc.date.available2023-04-20T09:47:41Z
dc.date.issued2023-04
dc.identifier.citationCarrasco Mantis, A., Alarcón, T. y Sanz Herrera, J.A. (2023). An in silico study on the influence of extracellular matrix mechanics on vasculogenesis. Computer Methods and Programs in Biomedicine, 231, 107369. https://doi.org/10.1016/j.cmpb.2023.107369.
dc.identifier.issn0169-2607es
dc.identifier.urihttps://hdl.handle.net/11441/144690
dc.description.abstractBackground and objectives: Blood vessels form a network of capillaries throughout the body that perform essential functions for life. Vasculogenesis, i.e. the formation of new blood vessels, is regulated by many factors, biochemical ones being among the most important. However, others such as the biomechanical influence on shape, organization and structure of vessel networks require further investigation. In this paper, we develop a 3D agent-based mechanobiological model of vasculogenesis with the aim of analyzing how the mechanics of the extracellular matrix (ECM) affects vasculogenesis. Methods: For this purpose, we consider a growing domain composed of different cells: tip cells, which are the driving cells located at the end of the vessels and stalk cells, which are found in the interior of the vascular network. ECM is considered as particles (agents) that surround the growth of the vascular network. Depending on the cell type, different sets of forces are considered, such as chemotactic, mechanical, random and viscoelastic forces among others. Results: The growth of the network is iteratively analyzed and updated at each time step based on a mechanically-driven proliferation rule. The influence of different biomechanical factors, such as ECM stiffness or viscoelasticity are explored through in silico simulations. A number of indicators are defined along the algorithm, like number of cells, branches, tortuosity and anisotropy, in order to compare topological differences of the vascular network during vasculogenesis under different ECM conditions. The obtained results are qualitatively compared with other related works in the literature. Conclusions: The present study sheds some light and partially explain, from an in silico perspective, the role of ECM mechanics on vasculogenesis. The main conclusions of this work are: (i) increased stiffness increases proliferation, (ii) the network tends to migrate towards stiffer areas, and (iii) increased viscoelasticity decreases proliferation.es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofComputer Methods and Programs in Biomedicine, 231, 107369.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectVasculogenesises
dc.subjectAgent-based modeles
dc.subjectExtracellular matrixes
dc.subjectMechanobiologyes
dc.subjectCellular mechanicses
dc.subjectViscoelasticityes
dc.titleAn in silico study on the influence of extracellular matrix mechanics on vasculogenesises
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDPGC2018-097257-B-C31es
dc.relation.projectIDPID2021-126051OB-C42es
dc.relation.projectIDP20-01195es
dc.relation.projectIDPRE2019-090391es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0169260723000366es
dc.identifier.doi10.1016/j.cmpb.2023.107369es
dc.contributor.groupUniversidad de Sevilla. TEP245: Ingeniería de las estructurases
idus.validador.notaThis is an open access article under the CC BY-NC-ND licensees
dc.journaltitleComputer Methods and Programs in Biomedicinees
dc.publication.volumen231es
dc.publication.initialPage107369es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderAgencia Estatal de Investigación. Españaes
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es
dc.contributor.funderConsejería de Economía, Conocimiento, Empresas y Universidad - Junta de Andalucíaes

FicherosTamañoFormatoVerDescripción
Carrasco_2023_Computer Methods ...3.203MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional