Mostrar el registro sencillo del ítem

Artículo

dc.creatorBharti, Kishores
dc.creatorRay, Maharshies
dc.creatorXu, Zhen Penges
dc.creatorHayashi, Masahitoes
dc.creatorKwek, Leong Chuanes
dc.creatorCabello Quintero, Adánes
dc.date.accessioned2023-04-20T06:37:01Z
dc.date.available2023-04-20T06:37:01Z
dc.date.issued2022-09-26
dc.identifier.citationBharti, K., Ray, M., Xu, Z.P., Hayashi, M., Kwek, L.C. y Cabello Quintero, A. (2022). Graph-theoretic approach for self-testing in Bell scenarios. PRX Quantum, 3 (030344). https://doi.org/10.1103/PRXQuantum.3.030344.
dc.identifier.issn2691-3399es
dc.identifier.urihttps://hdl.handle.net/11441/144667
dc.description.abstractSelf-testing is a technology to certify states and measurements using only the statistics of the experiment. Self-testing is possible if some extremal points in the set BQ of quantum correlations for a Bell experiment are achieved, up to isometries, with specific states and measurements. However, BQ is difficult to characterize, so it is also difficult to prove whether or not a given matrix of quantum correlations allows for self-testing. Here, we show how some tools from graph theory can help to address this problem. We observe that BQ is strictly contained in an easy-to-characterize set associated with a graph, (G). Therefore, whenever the optimum over BQ and the optimum over (G) coincide, self-testing can be demonstrated by simply proving self-testability with (G). Interestingly, these maxima coincide for the quantum correlations that maximally violate many families of Bell-like inequalities. Therefore, we can apply this approach to prove the self-testability of many quantum correlations, including some that are not previously known to allow for self-testing. In addition, this approach connects self-testing to some open problems in discrete mathematics. We use this connection to prove a conjecture [M. Araújo et al., Phys. Rev. A, 88, 022118 (2013)] about the closed-form expression of the Lovász theta number for a family of graphs called the Möbius ladders. Although there are a few remaining issues (e.g., in some cases, the proof requires the assumption that measurements are of rank 1), this approach provides an alternative method to self-testing and draws interesting connections between quantum mechanics and discrete mathematics.es
dc.formatapplication/pdfes
dc.format.extent26 p.es
dc.language.isoenges
dc.publisherAmerican Physical Societyes
dc.relation.ispartofPRX Quantum, 3 (030344).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGraph-Theoretic approaches
dc.subjectSelf-testinges
dc.subjectBell scenarioses
dc.titleGraph-theoretic approach for self-testing in Bell scenarioses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada IIes
dc.relation.publisherversionhttps://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.3.030344es
dc.identifier.doi10.1103/PRXQuantum.3.030344es
dc.contributor.groupUniversidad de Sevilla. FQM239: Fundamentos de Mecánica Cuánticaes
dc.journaltitlePRX Quantumes
dc.publication.volumen3es
dc.publication.issue030344es

FicherosTamañoFormatoVerDescripción
Graph-theoretic approach for ...1.814MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional