Mostrar el registro sencillo del ítem

Artículo

dc.creatorPeinado Torrubia, Procopioes
dc.creatorÁlvarez Morales, Rosarioes
dc.creatorLucas, Martaes
dc.creatorFranco Navarro, Juan D.es
dc.creatorDurán Gutiérrez, Francisco J.es
dc.creatorColmenero Flores, José Mes
dc.creatorRosales, Miguel A.es
dc.date.accessioned2023-04-19T14:47:08Z
dc.date.available2023-04-19T14:47:08Z
dc.date.issued2023
dc.identifier.citationPeinado Torrubia, P., Álvarez Morales, R., Lucas, M., Franco Navarro, J.D., Durán Gutiérrez, F.J., Colmenero Flores, J.M. y Rosales, M.A. (2023). Nitrogen Assimilation and Photorespiration Become More Efficient under Chloride Nutrition as a Beneficial Macronutrient. Frontiers in Plant Science, 13, 1058774. https://doi.org/10.3389/fpls.2022.1058774.
dc.identifier.issn1664-462Xes
dc.identifier.urihttps://hdl.handle.net/11441/144658
dc.description.abstractChloride (Cl−) and nitrate ((Formula presented.)) are closely related anions involved in plant growth. Their similar physical and chemical properties make them to interact in cellular processes like electrical balance and osmoregulation. Since both anions share transport mechanisms, Cl− has been considered to antagonize (Formula presented.) uptake and accumulation in plants. However, we have recently demonstrated that Cl− provided at beneficial macronutrient levels improves nitrogen (N) use efficiency (NUE). Biochemical mechanisms by which beneficial Cl− nutrition improves NUE in plants are poorly understood. First, we determined that Cl− nutrition at beneficial macronutrient levels did not impair the (Formula presented.) uptake efficiency, maintaining similar (Formula presented.) content in the root and in the xylem sap. Second, leaf (Formula presented.) content was significantly reduced by the treatment of 6 mM Cl− in parallel with an increase in (Formula presented.) utilization and NUE. To verify whether Cl− nutrition reduces leaf (Formula presented.) accumulation by inducing its assimilation, we analysed the content of N forms and the activity of different enzymes and genes involved in N metabolism. Chloride supply increased transcript accumulation and activity of most enzymes involved in (Formula presented.) assimilation into amino acids, along with a greater accumulation of organic N (mostly proteins). A reduced glycine/serine ratio and a greater ammonium accumulation pointed to a higher activity of the photorespiration pathway in leaves of Cl−-treated plants. Chloride, in turn, promoted higher transcript levels of genes encoding enzymes of the photorespiration pathway. Accordingly, microscopy observations suggested strong interactions between different cellular organelles involved in photorespiration. Therefore, in this work we demonstrate for the first time that the greater (Formula presented.) utilization and NUE induced by beneficial Cl− nutrition is mainly due to the stimulation of (Formula presented.) assimilation and photorespiration, possibly favouring the production of ammonia, reductants and intermediates that optimize C-N re-utilization and plant growth. This work demonstrates new Cl− functions and remarks on its relevance as a potential tool to manipulate NUE in plants.es
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades RTI2018-094460-B- I00, ID2021-125157OB-100es
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas CSIC-201840E132, CSIC-202040E266es
dc.description.sponsorshipEuropean Union 895613es
dc.formatapplication/pdfes
dc.format.extent17 p.es
dc.language.isoenges
dc.publisherFrontiers Media S.A.es
dc.relation.ispartofFrontiers in Plant Science, 13, 1058774.
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAmino acidses
dc.subjectMetabolismes
dc.subjectNitratees
dc.subjectNitrogen use efficiencyes
dc.subjectNUEes
dc.subjectTobaccoes
dc.titleNitrogen Assimilation and Photorespiration Become More Efficient under Chloride Nutrition as a Beneficial Macronutrientes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Biología Vegetal y Ecologíaes
dc.relation.projectIDRTI2018-094460-B- I00es
dc.relation.projectIDID2021-125157OB-100es
dc.relation.projectIDCSIC-201840E132es
dc.relation.projectIDCSIC-202040E266es
dc.relation.projectID895613es
dc.relation.publisherversionhttps://dx.doi.org/10.3389/fpls.2022.1058774es
dc.identifier.doi10.3389/fpls.2022.1058774es
dc.journaltitleFrontiers in Plant Sciencees
dc.publication.volumen13es
dc.publication.initialPage1058774es
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (MICINN). Españaes
dc.contributor.funderConsejo Superior de Investigaciones Científicas (CSIC)es
dc.contributor.funderEuropean Union (UE). H2020es

FicherosTamañoFormatoVerDescripción
Nitrogen assimilation.pdf4.644MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional