Mostrar el registro sencillo del ítem

Artículo

dc.creatorLiu, Zenges
dc.creatorMarino, Michelees
dc.creatorReinoso Cuevas, José Antonioes
dc.creatorPaggi, Marcoes
dc.date.accessioned2023-03-30T08:27:41Z
dc.date.available2023-03-30T08:27:41Z
dc.date.issued2023-06
dc.identifier.citationLiu, Z., Marino, M., Reinoso Cuevas, J.A. y Paggi, M. (2023). A continuum large-deformation theory for the coupled modeling of polymer–solvent system with application to PV recycling. International Journal of Engineering Science, 187 (103842). https://doi.org/10.1016/j.ijengsci.2023.103842.
dc.identifier.issn0020-7225es
dc.identifier.urihttps://hdl.handle.net/11441/143709
dc.description.abstractNowadays recycling of photovoltaics (PV) using the solvent method is becoming a very hot topic as massive products deployed in the last century have approached the end of their service lifetime. The key problem in the recycling of end-of-life PV modules is the nondestructive recovery of precious silicon wafers for the manufacturing of new products. However, the attempt to comprehensively understand the polymer–solvent system in the PV recycling process is completely lacking. In this work, a thermodynamically consistent large-deformation theory is proposed to model the coupled behavior of this system. The development of continuum theory accounts for the solvent permeation, swelling and elastic deformation, as well as shrinking effects due to the initial crosslinking of ethylene-co-vinyl acetate (EVA). The crosslinking of EVA influences the stiffness of the polymer network, and interacts with the diffusive kinetics of solvents. Also, given the effects of mechanical constraint, the two-way coupling between the EVA deformation and solvent diffusion is established on the basis of thermodynamic arguments. The proposed modeling method is firstly applied to simulate the swelling experiments of cylindrical EVA samples in solvents Toluene, Tetrahydrofuran, and Octane, and good agreement has been achieved between the numerical prediction and available testing data. Then the second example demonstrates the capability of this modeling framework to describe the influences of initial crosslinking and mechanical constraints on the time history evolution of swelling and elastic deformation. Finally, the complete PV laminate in the 3D setting is modeled for the investigation of solvent penetration induced deformation in the silicon cell layer during the PV recycling process, and comparison has been made to showcase the spatial distribution of maximum principal stress of the silicon cell layers in solvents with different solubility parameters and molar volumes. With this computational tool at hand, it is possible to provide guidance to the design of suitable experimental procedures for the structure-intact recovery of silicon wafers in PV recycling with the solvent method.es
dc.formatapplication/pdfes
dc.format.extent25 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofInternational Journal of Engineering Science, 187 (103842).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLarge-deformationes
dc.subjectPolymer–solvent systemes
dc.subjectPV recyclinges
dc.subjectFinite element methodes
dc.titleA continuum large-deformation theory for the coupled modeling of polymer–solvent system with application to PV recyclinges
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDEU H2020 No 861061 – Project NEWFRACes
dc.relation.projectIDUS-1265577- FEDER Andalucía 2014–2020es
dc.relation.projectIDPID2019-109723GB-I00es
dc.relation.projectIDP2-00595es
dc.relation.projectIDTED2021-131649B-I00es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0020722523000332es
dc.identifier.doi10.1016/j.ijengsci.2023.103842es
dc.contributor.groupUniversidad de Sevilla. TEP131: Elasticidad y Resistencia de Materialeses
dc.journaltitleInternational Journal of Engineering Sciencees
dc.publication.volumen187es
dc.publication.issue103842es
dc.contributor.funderEuropean Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 861061 – Project NEWFRACes
dc.contributor.funderConsejería de Economía y Conocimiento of the Junta de Andalucía (Spain) contract US-1265577-Programa Operativo FEDER Andalucía 2014–2020es
dc.contributor.funderSpanish Ministerio de Ciencia, Innovación y Universidades, Spain grant PID2019-109723GB-I00es
dc.contributor.funderConsejería de Economía y Conocimiento of the Junta de Andalucía (Spain) grant P2-00595es
dc.contributor.funderMinisterio de Ciencia e Innovación of Spain TED2021-131649B-I00es

FicherosTamañoFormatoVerDescripción
IJES_reinoso-cuevas_2023_conti ...3.124MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional