Mostrar el registro sencillo del ítem

Artículo

dc.contributor.editorSánchez Martínez, David Tomáses
dc.creatorRodríguez de Arriba, Pablo Enriquees
dc.creatorCrespi, Francesco Mariaes
dc.creatorSánchez Martínez, David Tomáses
dc.creatorMuñoz Blanco, Antonioes
dc.creatorSánchez Lencero, Tomás Manueles
dc.date.accessioned2023-03-03T09:59:24Z
dc.date.available2023-03-03T09:59:24Z
dc.date.issued2022-11-15
dc.identifier.issn0960-1481es
dc.identifier.urihttps://hdl.handle.net/11441/143127
dc.description.abstractThis paper focuses on the thermodynamic comparison between pure supercritical Carbon Dioxide and blended transcritical Carbon Dioxide power cycles by means of a thorough exergy analysis, considering exergy efficiency, exergy destruction and efficiency losses from Carnot cycle as main figures of merit. A reference power plant based on a steam Rankine cycle and representative of the state-of-the-art (SoA) of Concentrated Solar Power (CSP) plants is selected as base-case. Two different temperatures of the energy (heat) source are considered: 575 ◦C (SoA) and 725 ◦C (next generation CSP). Compared to SoA Rankine cycles, CO2 blends enable cycle exergy efficiency gains up to 2.7 percentage points at 575 ◦C. At 725 ◦C, they outperform both SoA and pure CO₂ cycles with exergy efficiencies up to 75.3%. This performance is brought by a significant reduction in the exergy destruction across the compression and heat rejection process rounding 50%. Additionally, it has been found that the internal condensation occurring inside the heat recuperator for those mixtures with a large temperature glide improves recuperator exergy efficiency, supporting the use of simpler layouts without split-compression. Finally, CO₂ blends exhibit lower cycle exergy efficiency degradation than pure sCO₂ in the event of an increase in the design ambient temperature.es
dc.description.sponsorshipUniversity of Seville Internal Research Programme (Plan Propio de Investigación) under contract No 2019/00000359es
dc.formatapplication/pdfes
dc.format.extent23 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCO₂ cycleses
dc.subjectCSP applicationses
dc.subjectCO₂-blendses
dc.subjectExergy analysises
dc.titleThe potential of transcritical cycles based on CO mixtures: An exergy-based analysises
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Energéticaes
dc.relation.projectIDEU2020 814985es
dc.relation.projectIDUS-PPI 2019/00000359es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S096014812201391Xes
dc.identifier.doi10.1016/j.renene.2022.09.041es
dc.contributor.groupUniversidad de Sevilla. TEP137: Máquinas y Motores Térmicoses
dc.journaltitleRenewable Energyes
dc.publication.volumen199es
dc.publication.initialPage1606es
dc.publication.endPage1628es
dc.contributor.funderEuropean Union’s Horizon 2020 grant agreement Nº814985es

FicherosTamañoFormatoVerDescripción
1-s2.0-S096014812201391X-main.pdf5.568MbIcon   [PDF] Ver/Abrir   Main article

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional