Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
A test for Gaussianity in Hilbert spaces via theempirical characteristic functional
Autor/es | Henze, Norbert
Jiménez Gamero, María Dolores |
Departamento | Universidad de Sevilla. Departamento de Estadística e Investigación Operativa |
Fecha de publicación | 2020-04-28 |
Fecha de depósito | 2023-01-30 |
Publicado en |
|
Resumen | LetX1,X2,...be independent and identically distributedrandom elements taking values in a separable HilbertspaceH. With applications for functional data in mind,Hmay be regarded as a space of square-integrable func-tions, ... LetX1,X2,...be independent and identically distributedrandom elements taking values in a separable HilbertspaceH. With applications for functional data in mind,Hmay be regarded as a space of square-integrable func-tions, defined on a compact interval. We propose andstudy a novel test of the hypothesisH0thatX1has someunspecified nondegenerate Gaussian distribution. Thetest statisticTn=Tn(X1,...,Xn) is based on a measureof deviation between the empirical characteristic func-tional ofX1,...,Xnand the characteristic functional ofa suitable Gaussian random element ofH.Wederivethe asymptotic distribution ofTnasn→∞underH0andprovide a consistent bootstrap approximation thereof.Moreover, we obtain an almost sure limit ofTnandthe limit distributions ofTnunder fixed and contiguousalternatives to Gaussianity. Simulations show that thenew test is competitive with respect to the hitherto fewcompetitors available. |
Cita | Henze, N. y Jiménez Gamero, M.D. (2020). A test for Gaussianity in Hilbert spaces via theempirical characteristic functional. Scandinavian journal of statistics, 48 (2), 406-428. https://doi.org/10.1111/sjos.12470. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
A test for Gaussianity in Hilbert ... | 700.0Kb | [PDF] | Ver/ | |