Mostrar el registro sencillo del ítem

Artículo

dc.creatorDelgado, Alaines
dc.creatorMoreno Casares, Pablo A.es
dc.creatorReis, Roberto doses
dc.creatorZini, Modjtaba Shokrianes
dc.creatorCampos, Robertoes
dc.creatorCruz Hernández, Norgees
dc.creatorVoigt, Arne-Christianes
dc.creatorLowe, Anguses
dc.creatorJahangiri, Soranes
dc.creatorMartin-Delgado, M. A.es
dc.creatorMueller, Jonathan E.es
dc.creatorArrazola, Juan Migueles
dc.date.accessioned2022-12-16T11:17:50Z
dc.date.available2022-12-16T11:17:50Z
dc.date.issued2022-09
dc.identifier.citationDelgado, A., Moreno Casares, P.A., Reis, R.d., Zini, M.S., Campos, R., Cruz Hernández, N.,...,Arrazola, J.M. (2022). Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer. Physical Review A, 106 (3), 032428. https://doi.org/10.1103/PhysRevA.106.032428.
dc.identifier.issn2469-9934es
dc.identifier.issn2469-9926es
dc.identifier.urihttps://hdl.handle.net/11441/140567
dc.description.abstractThere is a pressing need to develop new rechargeable battery technologies that can offer higher energy storage, faster charging, and lower costs. Despite the success of existing methods for the simulation of battery materials, they can sometimes fall short of delivering accurate and reliable results. Quantum computing has been discussed as an avenue to overcome these issues, but only limited work has been done to outline how it may impact battery simulations. In this work, we provide a detailed answer to the following question: how can a quantum computer be used to simulate key properties of a lithium-ion battery? Based on recently introduced first-quantization techniques, we lay out an end-to-end quantum algorithm for calculating equilibrium cell voltages, ionic mobility, and thermal stability. These can be obtained from ground-state energies of materials, which are the core calculations executed by the quantum computer using qubitization-based quantum phase estimation. The algorithm includes explicit methods for preparing approximate ground states of periodic materials in first quantization. We bring these insights together to estimate the resources required to implement a quantum algorithm for simulating a realistic cathode material, dilithium iron silicate.es
dc.formatapplication/pdfes
dc.format.extent28 p.es
dc.language.isoenges
dc.publisherAmerican Physical Societyes
dc.relation.ispartofPhysical Review A, 106 (3), 032428.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleSimulating key properties of lithium-ion batteries with a fault-tolerant quantum computeres
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada Ies
dc.relation.publisherversionhttps://link.aps.org/doi/10.1103/PhysRevA.106.032428es
dc.identifier.doi10.1103/PhysRevA.106.032428es
dc.contributor.groupUniversidad de Sevilla. FQM401: Simulación y Aplicación de Materialeses
dc.journaltitlePhysical Review Aes
dc.publication.volumen106es
dc.publication.issue3es
dc.publication.initialPage032428es

FicherosTamañoFormatoVerDescripción
PRA_cruz-hernandez_2022_simula ...2.286MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional