Article
Design of Fe-containing GdTbCoAl high-entropy-metallic-glass composite microwires with tunable Curie temperatures and enhanced cooling efficiency
Author/s | Yin, Hangboce
Law, Jia Yan ![]() ![]() ![]() ![]() ![]() ![]() Franco García, Victorino ![]() ![]() ![]() ![]() ![]() ![]() ![]() Shen, Hongxian Jiang, Sida Bao, Ying Sun, Jianfei |
Department | Universidad de Sevilla. Departamento de Física de la Materia Condensada |
Date | 2021 |
Published in |
|
Abstract | Through designing the composition and processing approach, the non-equiatomic (Gd36Tb20Co20Al24)100-xFex (x = 0, 1, 2 and 3 at.%) high-entropy-metallic-glass (HE-MG) alloy microwires were successfully fabricated by ... Through designing the composition and processing approach, the non-equiatomic (Gd36Tb20Co20Al24)100-xFex (x = 0, 1, 2 and 3 at.%) high-entropy-metallic-glass (HE-MG) alloy microwires were successfully fabricated by melt-extraction technique. The microstructure and magnetocaloric properties of the microwires were systematically investigated. The microwires possess tunable Curie temperatures, i.e. 81–108 K, above the typical rare-earth (RE) containing HE-MG reports. The high Curie temperatures are attributed to the designed composition. Magnetocaloric response peak values of Fe-containing GdTbCoAl alloy microwires range 7.6–8.9 J kg−1 K−1 (5 T), which are comparable to those of many outstanding RE-containing magnetocaloric HE-MGs. The characteristics of the melt-extraction method, combining with compositional effects, favor the formation of amorphous and nanocrystalline phases. The increase in the cooling efficiency for microwires with higher Fe content can be attributed to the broadening of the Curie temperature distribution induced by the composition difference between nanocrystalline phase and amorphous matrix. The designed composition and the melt-extraction processing approach for Fe-containing GdTbCoAl alloys can tune their Curie temperatures towards a temperature range of natural gas liquefaction and improve their magnetocaloric properties. This demonstrates that Fe-containing GdTbCoAl HE-MG composite microwires have great potential as high-performance magnetic refrigerants. |
Funding agencies | National Natural Science Foundation of China China Postdoctoral Science Foundation Agencia Estatal de Investigación. España Universidad de Sevilla Junta de Andalucía China Scholarship Council |
Project ID. | 51871076
![]() 51671070 ![]() 51801044 ![]() 51827801 ![]() 2019M661275 ![]() PID2019-105720RB-I00 ![]() US-1260179 ![]() P18-RT-746 ![]() 201906120183 ![]() |
Citation | Yin, H., Law, J.Y., Franco García, V., Shen, H., Jiang, S., Bao, Y. y Sun, J. (2021). Design of Fe-containing GdTbCoAl high-entropy-metallic-glass composite microwires with tunable Curie temperatures and enhanced cooling efficiency. Materials and Design, 206, 109824. https://doi.org/10.1016/j.matdes.2021.109824. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Design of Fe-containing GdTbCo ... | 2.917Mb | ![]() | View/ | |