Mostrar el registro sencillo del ítem

Artículo

dc.contributor.authorCano-Mejías, Pilar
dc.contributor.authorCruz Zabala, Diego José
dc.contributor.authorGarcía Muñoz, Manuel
dc.contributor.authorViezzer, Eleonora
dc.contributor.authorFenstermacher, ME
dc.contributor.authorAbbate, J.
dc.contributor.authorAbe, S
dc.contributor.authorAbrams, T.
dc.contributor.authorAdams, M.
dc.contributor.authorAdamson, B.
dc.creator
dc.date.accessioned2022-09-22T16:26:12Z
dc.date.available2022-09-22T16:26:12Z
dc.date.issued2022-04
dc.identifier.citationFenstermacher, F.E., Abbate, J., Abe, S., Abrams, T., Adams, M., [et al.] (2022). DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy. Nuclear Fusion, 62 (4), 042024.
dc.identifier.issn0029-5515es
dc.identifier.issn1741-4326es
dc.identifier.urihttps://hdl.handle.net/11441/137299
dc.descriptiones
dc.description.abstractDIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-Ip steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L–H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-Ip beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate βN in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.es
dc.description.sponsorshipUS Department of Energy - Office of Science - Office of Fusion Energy Sciences DE-FC02- 04ER54698 y DE-AC52-07NA27344es
dc.formatapplication/pdfes
dc.format.extent22 p.es
dc.language.isoenges
dc.publisherIOP Publishinges
dc.relation.ispartofNuclear Fusion, 62 (4), 042024.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDIII-Des
dc.subjectTokamakes
dc.subjectFusion energyes
dc.subjectPlasma physicses
dc.subjectCore–edge integrationes
dc.titleDIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energyes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Energéticaes
dc.contributor.affiliation
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear
dc.relation.projectIDDE-FC02- 04ER54698es
dc.relation.projectIDDE-AC52-07NA27344es
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/1741-4326/ac2ff2es
dc.identifier.doi10.1088/1741-4326/ac2ff2es
dc.journaltitleNuclear Fusiones
dc.publication.volumen62es
dc.publication.issue4es
dc.publication.initialPage042024es

FicherosTamañoFormatoVerDescripción
Fenstermacher_2022_Nucl._Fusio ...7.570MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional