Show simple item record

Article

dc.creatorPeriáñez Rodríguez, Raúles
dc.creatorBezhenar, R.es
dc.creatorBrovchenko, I.es
dc.creatorDuffa, Celinees
dc.creatorLosjpe, M.es
dc.creatorJung, Kyung Taees
dc.creatorKobayashi, T.es
dc.creatorLamego, Fernandoes
dc.creatorMaderich, Vladimires
dc.creatorMin, Byung-Iles
dc.creatorNies, Hartmutes
dc.creatorOsvath, Iolandaes
dc.creatorOutola, I.es
dc.creatorPsaltaki, Mariaes
dc.creatorSuh, Kyunk-Sukes
dc.creatorWith, Govert dees
dc.date.accessioned2022-09-06T08:30:42Z
dc.date.available2022-09-06T08:30:42Z
dc.date.issued2016
dc.identifier.citationPeriáñez Rodríguez, R., Bezhenar, R., Brovchenko, I., Duffa, C., Losjpe, M., Jung, K.T.,...,With, G.d. (2016). Modelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarios. Science of the Total Environment, 569-570 (November 2016), 594-602.
dc.identifier.issn0048-9697es
dc.identifier.urihttps://hdl.handle.net/11441/136764
dc.description.abstractState-of-the art dispersion models were applied to simulate 137Cs dispersion from Chernobyl nuclear power plant disaster fallout in the Baltic Sea and from Fukushima Daiichi nuclear plant releases in the Pacific Ocean after the 2011 tsunami. Models were of different nature, from box to full three-dimensional models, and included water/sediment interactions. Agreement between models was very good in the Baltic. In the case of Fukushima, results from models could be considered to be in acceptable agreement only after a model harmonization process consisting of using exactly the same forcing (water circulation and parameters) in all models. It was found that the dynamics of the considered system (magnitude and variability of currents) was essential in obtaining a good agreement between models. The difficulties in developing operative models for decision-making support in these dynamic environments were highlighted. Three stages which should be considered after an emergency, each of them requiring specific modelling approaches, have been defined. They are the emergency, the post-emergency and the long-term phases.es
dc.description.sponsorshipEuropean Union FP7 EURATOM project PREPARE 323287es
dc.formatapplication/pdfes
dc.format.extent9es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofScience of the Total Environment, 569-570 (November 2016), 594-602.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBaltic seaes
dc.subjectChernobiles
dc.subjectFukushima Dai-ichies
dc.subjectHydrodynamicses
dc.subjectDispersion modeles
dc.subjectCaesiumes
dc.titleModelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarioses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada Ies
dc.relation.projectIDEU FP7 EURATOM project PREPARE 323287es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0048969716313055?via%3Dihubes
dc.identifier.doi10.1016/j.scitotenv.2016.06.131es
dc.contributor.groupUniversidad de Sevilla. RNM138: Física Nuclear Aplicadaes
dc.journaltitleScience of the Total Environmentes
dc.publication.volumen569-570es
dc.publication.issueNovember 2016es
dc.publication.initialPage594es
dc.publication.endPage602es
dc.identifier.sisius20955801es
dc.contributor.funderEuropean Union (UE)es

FilesSizeFormatViewDescription
1-s2.0-S0048969716313055-main.pdf1.487MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional