Mostrar el registro sencillo del ítem

Artículo

dc.creatorAyensa Jiménez, Jacoboes
dc.creatorDoweidar, Mohamed Hamdyes
dc.creatorSanz Herrera, José Antonioes
dc.creatorDoblare, M.es
dc.date.accessioned2022-09-02T17:20:25Z
dc.date.available2022-09-02T17:20:25Z
dc.date.issued2022-04
dc.identifier.citationAyensa Jiménez, J., Doweidar, M.H., Sanz Herrera, J.A. y Doblare, M. (2022). Understanding glioblastoma invasion using physically-guided neural networks with internal variables. PLOS Computational Biology, 18 (4), e1010019.
dc.identifier.issn1553-7358es
dc.identifier.urihttps://hdl.handle.net/11441/136656
dc.description.abstractMicrofluidic capacities for both recreating and monitoring cell cultures have opened the door to the use of Data Science and Machine Learning tools for understanding and simulating tumor evolution under controlled conditions. In this work, we show how these techniques could be applied to study Glioblastoma, the deadliest and most frequent primary brain tumor. In particular, we study Glioblastoma invasion using the recent concept of Physically-Guided Neural Networks with Internal Variables (PGNNIV), able to combine data obtained from microfluidic devices and some physical knowledge governing the tumor evolution. The physics is introduced in the network structure by means of a nonlinear advection-diffusion-reaction partial differential equation that models the Glioblastoma evolution. On the other hand, multilayer perceptrons combined with a nodal deconvolution technique are used for learning the go or grow metabolic behavior which characterises the Glioblastoma invasion. The PGNNIV is here trained using synthetic data obtained from in silico tests created under different oxygenation conditions, using a previously validated model. The unravelling capacity of PGNNIV enables discovering complex metabolic processes in a non-parametric way, thus giving explanatory capacity to the networks, and, as a consequence, surpassing the predictive power of any parametric approach and for any kind of stimulus. Besides, the possibility of working, for a particular tumor, with different boundary and initial conditions, permits the use of PGNNIV for defining virtual therapies and for drug design, thus making the first steps towards in silico personalised medicine.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación - FEDER PGC2018-097257-B-Ces
dc.description.sponsorshipMinisterio de Ciencia e Innovación - FEDER PID2019-106099RB-C44/AEI/10.13039/ 501100011033es
dc.formatapplication/pdfes
dc.format.extent27 p.es
dc.language.isoenges
dc.publisherPublic Library Sciencees
dc.relation.ispartofPLOS Computational Biology, 18 (4), e1010019.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleUnderstanding glioblastoma invasion using physically-guided neural networks with internal variableses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDPGC2018-097257-B-Ces
dc.relation.projectIDPID2019-106099RB-C44/AEI/10.13039/ 501100011033es
dc.relation.publisherversionhttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010019es
dc.identifier.doi10.1371/journal.pcbi.1010019es
dc.journaltitlePLOS Computational Biologyes
dc.publication.volumen18es
dc.publication.issue4es
dc.publication.initialPagee1010019es

FicherosTamañoFormatoVerDescripción
journal.pcbi.1010019.pdf2.855MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional