Mostrar el registro sencillo del ítem

Artículo

dc.creatorGundogdu, Pelines
dc.creatorLoucera, Carloses
dc.creatorAlamo Álvarez, Inmaculadaes
dc.creatorDopazo, Joaquínes
dc.creatorNepomuceno Chamorro, Isabel de los Ángeleses
dc.date.accessioned2022-06-30T09:23:45Z
dc.date.available2022-06-30T09:23:45Z
dc.date.issued2022
dc.identifier.citationGundogdu, P., Loucera, C., Alamo Álvarez, I., Dopazo, J. y Nepomuceno Chamorro, I.d.l.Á. (2022). Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data. BioData Mining, 15 (1 - art. nº1)
dc.identifier.issn1756-0381es
dc.identifier.urihttps://hdl.handle.net/11441/134833
dc.description.abstractBackground: Single-cell RNA sequencing (scRNA-seq) data provide valuable insights into cellular heterogeneity which is significantly improving the current knowledge on biology and human disease. One of the main applications of scRNA-seq data analysis is the identification of new cell types and cell states. Deep neural networks (DNNs) are among the best methods to address this problem. However, this performance comes with the trade-off for a lack of interpretability in the results. In this work we propose an intelligible pathway-driven neural network to correctly solve cell-type related problems at single-cell resolution while providing a biologically meaningful representation of the data. Results: In this study, we explored the deep neural networks constrained by several types of prior biological information, e.g. signaling pathway information, as a way to reduce the dimensionality of the scRNA-seq data. We have tested the proposed biologically-based architectures on thousands of cells of human and mouse origin across a collection of public datasets in order to check the performance of the model. Specifically, we tested the architecture across different validation scenarios that try to mimic how unknown cell types are clustered by the DNN and how it correctly annotates cell types by querying a database in a retrieval problem. Moreover, our approach demonstrated to be comparable to other less interpretable DNN approaches constrained by using protein-protein interactions gene regulation data. Finally, we show how the latent structure learned by the network could be used to visualize and to interpret the composition of human single cell datasets. Conclusions: Here we demonstrate how the integration of pathways, which convey fundamental information on functional relationships between genes, with DNNs, that provide an excellent classification framework, results in an excellent alternative to learn a biologically meaningful representation of scRNA-seq data. In addition, the introduction of prior biological knowledge in the DNN reduces the size of the network architecture. Comparative results demonstrate a superior performance of this approach with respect to other similar approaches. As an additional advantage, the use of pathways within the DNN structure enables easy interpretability of the results by connecting features to cell functionalities by means of the pathway nodes, as demonstrated with an example with human melanoma tumor cellses
dc.description.sponsorshipMinisterio de Ciencia e Innovación PID2020-117979RB-I00es
dc.description.sponsorshipInstituto de Salud Carlos III IMP/0019es
dc.description.sponsorshipEuropean Union (UE). H2020 (MLFPM) GA 813533es
dc.formatapplication/pdfes
dc.format.extent21es
dc.language.isoenges
dc.publisherBMCes
dc.relation.ispartofBioData Mining, 15 (1 - art. nº1)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDeep neural networkes
dc.subjectSignaling pathwayes
dc.subjectSingle celles
dc.subjectscRNA-seqes
dc.subjectGene expressiones
dc.subjectTranscriptomicses
dc.subjectMachine Learninges
dc.titleIntegrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq dataes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticoses
dc.relation.projectIDPID2020-117979RB-I00es
dc.relation.projectIDIMP/0019es
dc.relation.projectID(MLFPM) GA 813533es
dc.relation.publisherversionhttps://biodatamining.biomedcentral.com/articles/10.1186/s13040-021-00285-4es
dc.identifier.doi10.1186/s13040-021-00285-4es
dc.contributor.groupUniversidad de Sevilla. TIC134: Sistemas Informáticoses
dc.journaltitleBioData Mininges
dc.publication.volumen15es
dc.publication.issue1 - art. nº1es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderInstituto de Salud Carlos IIIes
dc.contributor.funderEuropean Union (UE). H2020es

FicherosTamañoFormatoVerDescripción
s13040-021-00285-4.pdf1.134MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional