Mostrar el registro sencillo del ítem

Artículo

dc.creatorCastillo Seoane, Javieres
dc.creatorGil Rostra, J.es
dc.creatorLópez Flores, Víctores
dc.creatorLozano, Gabrieles
dc.creatorFerrer Fernández, Francisco Javieres
dc.creatorEspinós Manzorro, Juan Pedroes
dc.creatorOstrikov, K.es
dc.creatorYubero, F.es
dc.creatorGonzález Elipe, Agustín Rodríguezes
dc.creatorBarranco Quero, Ángeles
dc.creatorSánchez Valencia, Juan Ramónes
dc.creatorBorrás Martos, Ana Isabeles
dc.date.accessioned2022-06-29T10:33:45Z
dc.date.available2022-06-29T10:33:45Z
dc.date.issued2021
dc.identifier.citationCastillo Seoane, J., Gil Rostra, J., López Flores, V., Lozano, G., Ferrer Fernández, F.J., Espinós Manzorro, J.P.,...,Borrás Martos, A.I. (2021). One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR. Nanoscale, 13 (32), 13882-13895.
dc.identifier.issn2040-3372es
dc.identifier.urihttps://hdl.handle.net/11441/134793
dc.description.abstractThe eventual exploitation of one-dimensional nanomaterials needs the development of scalable, high yield, homogeneous and environmentally friendly methods capable of meeting the requirements for fabrication of functional nanomaterials with properties on demand. In this article, we demonstrate a vacuum and plasma one-reactor approach for the synthesis of fundamental common elements in solar energy and optoelectronics, i.e. the transparent conducting electrode but in the form of nanotube and nanotree architectures. Although the process is generic and can be used for a variety of TCOs and wide-bandgap semiconductors, we focus herein on indium doped tin oxide (ITO) as the most previously researched in previous applications. This protocol combines widely applied deposition techniques such as thermal evaporation for the formation of organic nanowires serving as 1D and 3D soft templates, deposition of polycrystalline layers by magnetron sputtering, and removal of the templates by simply annealing under mild vacuum conditions. The process variables are tuned to control the stoichiometry, morphology, and alignment of the ITO nanotubes and nanotrees. Four-probe characterization reveals the improved lateral connectivity of the ITO nanotrees and applied on individual nanotubes shows resistivities as low as 3.5 ± 0.9 × 10–4 Ω cm, a value comparable to that of single-crystalline counterparts. The assessment of diffuse reflectance and transmittance in the UV-Vis range confirms the viability of the supported ITO nanotubes as random optical media working as strong scattering layers. Their further ability to form ITO nanotrees opens a path for practical applications as ultra-broadband absorbers in the NIR. The demonstrated low resistivity and optical properties of these ITO nanostructures open a way for their use in LEDs, IR shields, energy harvesting, nanosensors, and photoelectrochemical applications.es
dc.description.sponsorshipAEI-MICINN (PID2019-110430GB-C21 and PID2019-109603RA-I0)es
dc.description.sponsorshipJunta de Andalucía (PAIDI-2020 through projects US-1263142, ref. AT17- 6079, P18-RT-3480)es
dc.description.sponsorshipEU H2020 program 715832 and 851929es
dc.formatapplication/pdfes
dc.format.extent14 p.es
dc.language.isoenges
dc.publisherRoyal Society of Chemistryes
dc.relation.ispartofNanoscale, 13 (32), 13882-13895.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleOne-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIRes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Atómica, Molecular y Nucleares
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física de la Materia Condensadaes
dc.relation.publisherversionhttps://dx.doi.org/10.1039/d1nr01937fes
dc.identifier.doi10.1039/d1nr01937fes
dc.journaltitleNanoscalees
dc.publication.volumen13es
dc.publication.issue32es
dc.publication.initialPage13882es
dc.publication.endPage13895es
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (MICINN). Españaes
dc.contributor.funderJunta de Andalucíaes
dc.contributor.funderEuropean Union (UE). H2020es

FicherosTamañoFormatoVerDescripción
d1nr01937f.pdf3.408MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional