Article
Generation of synthetic data with Conditional Generative Adversarial Networks
Author/s | Vega Márquez, Belén
Rubio Escudero, Cristina Nepomuceno Chamorro, Isabel de los Ángeles |
Department | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos |
Publication Date | 2022 |
Deposit Date | 2022-06-01 |
Published in |
|
Awards | Premio Mensual Publicación Científica Destacada de la US. Escuela Técnica Superior de Ingeniería Informática |
Abstract | The generation of synthetic data is becoming a fundamental task in the daily life of any organization due to the new protection
data laws that are emerging. Because of the rise in the use of Artificial Intelligence, one ... The generation of synthetic data is becoming a fundamental task in the daily life of any organization due to the new protection data laws that are emerging. Because of the rise in the use of Artificial Intelligence, one of the most recent proposals to address this problem is the use of Generative Adversarial Networks (GANs). These types of networks have demonstrated a great capacity to create synthetic data with very good performance. The goal of synthetic data generation is to create data that will perform similarly to the original dataset for many analysis tasks, such as classification. The problem of GANs is that in a classification problem, GANs do not take class labels into account when generating new data, it is treated as any other attribute. This research work has focused on the creation of new synthetic data from datasets with different characteristics with a Conditional Generative Adversarial Network (CGAN). CGANs are an extension of GANs where the class label is taken into account when the new data is generated. The performance of our results has been measured in two different ways: firstly, by comparing the results obtained with classification algorithms, both in the original datasets and in the data generated; secondly, by checking that the correlation between the original data and those generated is minimal. |
Funding agencies | Ministerio de Ciencia e Innovación (MICIN). España Junta de Andalucía |
Project ID. | TIN2017-88209-C2-2-R
US-1263341 |
Citation | Vega Márquez, B., Rubio Escudero, C. y Nepomuceno Chamorro, I.d.l.Á. (2022). Generation of synthetic data with Conditional Generative Adversarial Networks. Logic Journal of the Interest Group in Pure and Applied Logic (IGPL), 30 (2), 252-262. |
Files | Size | Format | View | Description |
---|---|---|---|---|
jzaa059.pdf | 610.0Kb | [PDF] | View/ | |