Show simple item record

Article

dc.creatorCrespo Cadenas, Carloses
dc.creatorMadero Ayora, María Josées
dc.creatorBecerra González, Juan Antonioes
dc.date.accessioned2022-03-08T10:33:19Z
dc.date.available2022-03-08T10:33:19Z
dc.date.issued2021
dc.identifier.citationCrespo-Cadenas, C., Madero-Ayora, M.J. y Becerra-González, J.A. (2021). A bivariate volterra series model for the design of power amplifier digital predistorters. Sensors, 21 (17), 5897.
dc.identifier.issn1424-8220es
dc.identifier.urihttps://hdl.handle.net/11441/130529
dc.description(This article belongs to the Special Issue Energy-Efficient Wireless Communication Systems)es
dc.description.abstractThe operation of the power amplifier (PA) in wireless transmitters presents a trade-off between linearity and power efficiency, being more efficient when the device exhibits the highest nonlinearity. Its modeling and linearization performance depend on the quality of the underlying Volterra models that are characterized by the presence of relevant terms amongst the enormous amount of regressors that these models generate. The presence of PA mechanisms that generate an internal state variable motivates the adoption of a bivariate Volterra series perspective with the aim of enhancing modeling capabilities through the inclussion of beneficial terms. In this paper, the conventional Volterra-based models are enhanced by the addition of terms, including cross products of the input signal and the new internal variable. The bivariate versions of the general full Volterra (FV) model and one of its pruned versions, referred to as the circuit-knowledge based Volterra (CKV) model, are derived by considering the signal envelope as the internal variable and applying the proposed methodology to the univariate models. A comparative assessment of the bivariate models versus their conventional counterparts is experimentally performed for the modeling of two PAs driven by a 30 MHz 5G New Radio signal: a class AB PA and a class J PA. The results for the digital predistortion of the class AB PA under a direct learning architecture reveal the benefits in linearization performance produced by the bivariate CKV model structure compared to that of the univariate CKV model.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación, Agencia Estatal de Investigación TEC2017-82807-Pes
dc.description.sponsorshipFondo Europeo de Desarrollo Regionales
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofSensors, 21 (17), 5897.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBehavioral modelinges
dc.subjectDigital predistortiones
dc.subjectNonlinear model identificationes
dc.subjectPower amplifier linearizationes
dc.subjectVolterra serieses
dc.titleA bivariate volterra series model for the design of power amplifier digital predistorterses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Teoría de la Señal y Comunicacioneses
dc.relation.projectIDTEC2017-82807-Pes
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/21/17/5897es
dc.identifier.doi10.3390/s21175897es
dc.contributor.groupUniversidad de Sevilla. TIC158: Sistemas de Radiocomunicaciónes
dc.journaltitleSensorses
dc.publication.volumen21es
dc.publication.issue17es
dc.publication.initialPage5897es

FilesSizeFormatViewDescription
Sensors_2021_Crespo_Madero_Bec ...1.930MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional