dc.creator | Crespo Cadenas, Carlos | es |
dc.creator | Madero Ayora, María José | es |
dc.creator | Becerra González, Juan Antonio | es |
dc.date.accessioned | 2022-03-08T10:33:19Z | |
dc.date.available | 2022-03-08T10:33:19Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Crespo-Cadenas, C., Madero-Ayora, M.J. y Becerra-González, J.A. (2021). A bivariate volterra series model for the design of power amplifier digital predistorters. Sensors, 21 (17), 5897. | |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://hdl.handle.net/11441/130529 | |
dc.description | (This article belongs to the Special Issue Energy-Efficient Wireless Communication Systems) | es |
dc.description.abstract | The operation of the power amplifier (PA) in wireless transmitters presents a trade-off
between linearity and power efficiency, being more efficient when the device exhibits the highest
nonlinearity. Its modeling and linearization performance depend on the quality of the underlying
Volterra models that are characterized by the presence of relevant terms amongst the enormous
amount of regressors that these models generate. The presence of PA mechanisms that generate
an internal state variable motivates the adoption of a bivariate Volterra series perspective with the
aim of enhancing modeling capabilities through the inclussion of beneficial terms. In this paper, the
conventional Volterra-based models are enhanced by the addition of terms, including cross products
of the input signal and the new internal variable. The bivariate versions of the general full Volterra
(FV) model and one of its pruned versions, referred to as the circuit-knowledge based Volterra (CKV)
model, are derived by considering the signal envelope as the internal variable and applying the
proposed methodology to the univariate models. A comparative assessment of the bivariate models
versus their conventional counterparts is experimentally performed for the modeling of two PAs
driven by a 30 MHz 5G New Radio signal: a class AB PA and a class J PA. The results for the digital
predistortion of the class AB PA under a direct learning architecture reveal the benefits in linearization
performance produced by the bivariate CKV model structure compared to that of the univariate
CKV model. | es |
dc.description.sponsorship | Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación TEC2017-82807-P | es |
dc.description.sponsorship | Fondo Europeo de Desarrollo Regional | es |
dc.format | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.relation.ispartof | Sensors, 21 (17), 5897. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Behavioral modeling | es |
dc.subject | Digital predistortion | es |
dc.subject | Nonlinear model identification | es |
dc.subject | Power amplifier linearization | es |
dc.subject | Volterra series | es |
dc.title | A bivariate volterra series model for the design of power amplifier digital predistorters | es |
dc.type | info:eu-repo/semantics/article | es |
dcterms.identifier | https://ror.org/03yxnpp24 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.contributor.affiliation | Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones | es |
dc.relation.projectID | TEC2017-82807-P | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/21/17/5897 | es |
dc.identifier.doi | 10.3390/s21175897 | es |
dc.contributor.group | Universidad de Sevilla. TIC158: Sistemas de Radiocomunicación | es |
dc.journaltitle | Sensors | es |
dc.publication.volumen | 21 | es |
dc.publication.issue | 17 | es |
dc.publication.initialPage | 5897 | es |