dc.creator | García Archilla, Juan Bosco | es |
dc.creator | John, Volker | es |
dc.creator | Novo, Julia | es |
dc.date.accessioned | 2022-02-02T16:28:20Z | |
dc.date.available | 2022-02-02T16:28:20Z | |
dc.date.issued | 2021-11 | |
dc.identifier.citation | García Archilla, J.B., John, V. y Novo, J. (2021). On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows. Computer Methods in Applied Mechanics and Engineering, 385. Article number 114032. | |
dc.identifier.issn | ISSN : 0045-7825 | es |
dc.identifier.issn | eISSN : 1879-2138 | es |
dc.identifier.uri | https://hdl.handle.net/11441/129591 | |
dc.description.abstract | The kinetic energy of a flow is proportional to the square of the L2(Ω) norm of the velocity. Given a sufficient regular
velocity field and a velocity finite element space with polynomials of degree r , then the best approximation error in L2(Ω) is
of order r +1. In this survey, the available finite element error analysis for the velocity error in L∞(0, T ; L2(Ω)) is reviewed,
where T is a final time. Since in practice the case of small viscosity coefficients or dominant convection is of particular interest,
which may result in turbulent flows, robust error estimates are considered, i.e., estimates where the constant in the error bound
does not depend on inverse powers of the viscosity coefficient. Methods for which robust estimates can be derived enable
stable flow simulations for small viscosity coefficients on comparatively coarse grids, which is often the situation encountered
in practice. To introduce stabilization techniques for the convection-dominated regime and tools used in the error analysis,
evolutionary linear convection–diffusion equations are studied at the beginning. The main part of this survey considers robust
finite element methods for the incompressible Navier–Stokes equations of order r −1, r , and r +1/2 for the velocity error in
L∞(0, T ; L2(Ω)). All these methods are discussed in detail. In particular, a sketch of the proof for the error bound is given
that explains the estimate of important terms which determine finally the order of convergence. Among them, there are methods
for inf–sup stable pairs of finite element spaces as well as for pressure-stabilized discretizations. Numerical studies support the
analytic results for several of these methods. In addition, methods are surveyed that behave in a robust way but for which only
a non-robust error analysis is available. The conclusion of this survey is that the problem of whether or not there is a robust
method with optimal convergence order for the kinetic energy is still open. | es |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades PGC2018-096265- B-I00 | es |
dc.description.sponsorship | Ministerio de Ciencia e Innovación PID2019-104141GB-I00 | es |
dc.description.sponsorship | Junta de Castilla y León VA169P20 | es |
dc.format | application/pdf | es |
dc.format.extent | 54 p. | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.relation.ispartof | Computer Methods in Applied Mechanics and Engineering, 385. Article number 114032. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Incompressible Navier–Stokes equations | es |
dc.subject | Convection–diffusion equations | es |
dc.subject | Convection-dominated regime | es |
dc.subject | Finite element methods | es |
dc.subject | Convergence of the error of the kinetic energy | es |
dc.subject | Robust error bounds | es |
dc.title | On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows | es |
dc.type | info:eu-repo/semantics/article | es |
dc.type.version | info:eu-repo/semantics/publishedVersion | es |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | es |
dc.contributor.affiliation | Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI) | es |
dc.relation.projectID | PGC2018-096265- B-I00 | es |
dc.relation.projectID | PID2019-104141GB-I00 | es |
dc.relation.projectID | VA169P20 | es |
dc.relation.publisherversion | https://doi.org/10.1016/j.cma.2021.114032 | es |
dc.identifier.doi | 10.1016/j.cma.2021.114032 | es |
dc.journaltitle | Computer Methods in Applied Mechanics and Engineering | es |
dc.publication.volumen | 385 | es |
dc.publication.initialPage | Article number 114032 | es |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades (MICINN). España | es |
dc.contributor.funder | Ministerio de Ciencia e Innovación (MICIN). España | es |
dc.contributor.funder | Junta de Castilla-León | es |
dc.contributor.funder | European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) | es |