Show simple item record

Article

dc.creatorAlonso Meijide, José Maríaes
dc.creatorÁlvarez Mozos, Mikeles
dc.creatorFiestras Janeiro, M. Gloriaes
dc.creatorJiménez Losada, Andréses
dc.date.accessioned2022-01-28T17:44:13Z
dc.date.available2022-01-28T17:44:13Z
dc.date.issued2021-08
dc.identifier.citationAlonso Meijide, J.M., Álvarez Mozos, M., Fiestras Janeiro, M.G. y Jiménez Losada, A. (2021). Marginality and convexity in partition function form games. Mathematical Methods of Operations Research, 94 (1), 99-121.
dc.identifier.issnISSN: 1432-2994es
dc.identifier.issnE-ISSN: 1432-5217es
dc.identifier.urihttps://hdl.handle.net/11441/129422
dc.description.abstractIn this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.es
dc.description.sponsorshipUnión Europea MTM2017-87197-C3-2-P/ MTM2017-87197-C3-3-P/ PID2020-113110GB-L00/ MTM2017-83455-Pes
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación MTM2017-87197-C3-2-P/ MTM2017-87197-C3-3-P/ PID2020-113110GB-L00/ MTM2017-83455-Pes
dc.description.sponsorshipGeneralitat de Catalunya 2017 SGR-778es
dc.description.sponsorshipJunta de Andalucía FQM237es
dc.description.sponsorshipXunta de Galicia/FEDER ED431C-2016-040es
dc.description.sponsorshipXunta de Galicia/FEDER ED431C-2017/38es
dc.formatapplication/pdfes
dc.format.extent23 p.es
dc.language.isoenges
dc.publisherSpringer Naturees
dc.relation.ispartofMathematical Methods of Operations Research, 94 (1), 99-121.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGame theoryes
dc.subjectPartition functiones
dc.subjectPartial orderes
dc.subjectMarginalityes
dc.subjectConvexityes
dc.titleMarginality and convexity in partition function form gameses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada II (ETSI)es
dc.relation.projectIDMTM2017-87197-C3-2-Pes
dc.relation.projectIDMTM2017-87197-C3-3-Pes
dc.relation.projectIDPID2020-113110GB-L00es
dc.relation.projectIDMTM2017-83455-Pes
dc.relation.projectID2017 SGR-778es
dc.relation.projectIDFQM237es
dc.relation.projectIDED431C-2016-040es
dc.relation.projectIDED431C-2017/38es
dc.relation.publisherversionhttps://doi.org/10.1007/s00186-021-00748-8es
dc.identifier.doi10.1007/s00186-021-00748-8es
dc.journaltitleMathematical Methods of Operations Researches
dc.publication.volumen94es
dc.publication.issue1es
dc.publication.initialPage99es
dc.publication.endPage121es
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (MICINN). Españaes
dc.contributor.funderAgencia Estatal de Investigación. Españaes
dc.contributor.funderGeneralitat de Catalunyaes
dc.contributor.funderJunta de Andalucíaes
dc.contributor.funderXunta de Galiciaes

FilesSizeFormatViewDescription
Marginality and convexity in ...434.1KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional