Show simple item record

PhD Thesis

dc.contributor.advisorGalindo Duarte, José Ángeles
dc.contributor.advisorBenavides Cuevas, David Felipees
dc.creatorVidal Silva, Cristianes
dc.date.accessioned2021-12-16T08:29:27Z
dc.date.available2021-12-16T08:29:27Z
dc.date.issued2021-07-07
dc.identifier.citationVidal Silva, C. (2021). Configuration Analysis for Large Scale Feature Models: Towards Speculative-Based Solutions. (Tesis Doctoral Inédita). Universidad de Sevilla, Sevilla.
dc.identifier.urihttps://hdl.handle.net/11441/128274
dc.description.abstractLos sistemas de alta variabilidad son sistemas de software en los que la gestión de la variabilidad es una actividad central. Algunos ejemplos actuales de sistemas de alta variabilidad son el sistema web de gesión de contenidos Drupal, el núcleo de Linux, y las distribuciones Debian de Linux. La configuración en sistemas de alta variabilidad es la selección de opciones de configuración según sus restricciones de configuración y los requerimientos de usuario. Los modelos de características son un estándar “de facto” para modelar las funcionalidades comunes y variables de sistemas de alta variabilidad. No obstante, el elevado número de componentes y configuraciones que un modelo de características puede contener hacen que el análisis manual de estos modelos sea una tarea muy costosa y propensa a errores. Así nace el análisis automatizado de modelos de características con mecanismos y herramientas asistidas por computadora para extraer información de estos modelos. Las soluciones tradicionales de análisis automatizado de modelos de características siguen un enfoque de computación secuencial para utilizar una unidad central de procesamiento y memoria. Estas soluciones son adecuadas para trabajar con sistemas de baja escala. Sin embargo, dichas soluciones demandan altos costos de computación para trabajar con sistemas de gran escala y alta variabilidad. Aunque existan recusos informáticos para mejorar el rendimiento de soluciones de computación, todas las soluciones con un enfoque de computación secuencial necesitan ser adaptadas para el uso eficiente de estos recursos y optimizar su rendimiento computacional. Ejemplos de estos recursos son la tecnología de múltiples núcleos para computación paralela y la tecnología de red para computación distribuida. Esta tesis explora la adaptación y escalabilidad de soluciones para el analisis automatizado de modelos de características de gran escala. En primer lugar, nosotros presentamos el uso de programación especulativa para la paralelización de soluciones. Además, nosotros apreciamos un problema de configuración desde otra perspectiva, para su solución mediante la adaptación y aplicación de una solución no tradicional. Más tarde, nosotros validamos la escalabilidad y mejoras de rendimiento computacional de estas soluciones para el análisis automatizado de modelos de características de gran escala. Concretamente, las principales contribuciones de esta tesis son: • Programación especulativa para la detección de un conflicto mínimo y 1 2 preferente. Los algoritmos de detección de conflictos mínimos determinan el conjunto mínimo de restricciones en conflicto que son responsables de comportamiento defectuoso en el modelo en análisis. Nosotros proponemos una solución para, mediante programación especulativa, ejecutar en paralelo y reducir el tiempo de ejecución de operaciones de alto costo computacional que determinan el flujo de acción en la detección de conflicto mínimo y preferente en modelos de características de gran escala. • Programación especulativa para un diagnóstico mínimo y preferente. Los algoritmos de diagnóstico mínimo determinan un conjunto mínimo de restricciones que, por una adecuada adaptación de su estado, permiten conseguir un modelo consistente o libre de conflictos. Este trabajo presenta una solución para el diagnóstico mínimo y preferente en modelos de características de gran escala mediante la ejecución especulativa y paralela de operaciones de alto costo computacional que determinan el flujo de acción, y entonces disminuir el tiempo de ejecución de la solución. • Completar de forma mínima y preferente una configuración de modelo por diagnóstico. Las soluciones para completar una configuración parcial determinan un conjunto no necesariamente mínimo ni preferente de opciones para obtener una completa configuración. Esta tesis soluciona el completar de forma mínima y preferente una configuración de modelo mediante técnicas previamente usadas en contexto de diagnóstico de modelos de características. Esta tesis evalua que todas nuestras soluciones preservan los valores de salida esperados, y también presentan mejoras de rendimiento en el análisis automatizado de modelos de características con modelos de gran escala en las operaciones descritases
dc.formatapplication/pdfes
dc.format.extent106 p.es
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleConfiguration Analysis for Large Scale Feature Models: Towards Speculative-Based Solutionses
dc.typeinfo:eu-repo/semantics/doctoralThesises
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticoses
dc.publication.endPage105es

FilesSizeFormatViewDescription
VIDAL SILVA, Cristian Tesis.pdf2.110MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional