Mostrar el registro sencillo del ítem

Artículo

dc.creatorGonzález García, María de la Cruzes
dc.creatorCejudo Fernández, Francisco Javieres
dc.creatorSahrawy, Mariames
dc.creatorSerrato, Antonio Jesúses
dc.date.accessioned2021-11-19T14:19:03Z
dc.date.available2021-11-19T14:19:03Z
dc.date.issued2021
dc.identifier.citationGonzález García, M.d.l.C., Cejudo Fernández, F.J., Sahrawy, M. y Serrato, A.J. (2021). Current knowledge on mechanisms preventing photosynthesis redox imbalance in plants. Antioxidants, 10 (11), 1789.
dc.identifier.issn2076-3921es
dc.identifier.urihttps://hdl.handle.net/11441/127573
dc.description.abstractPhotosynthesis includes a set of redox reactions that are the source of reducing power and energy for the assimilation of inorganic carbon, nitrogen and sulphur, thus generating organic compounds, and oxygen, which supports life on Earth. As sessile organisms, plants have to face continuous changes in environmental conditions and need to adjust the photosynthetic electron transport to prevent the accumulation of damaging oxygen by-products. The balance between photosynthetic cyclic and linear electron flows allows for the maintenance of a proper NADPH/ATP ratio that is adapted to the plant’s needs. In addition, different mechanisms to dissipate excess energy operate in plants to protect and optimise photosynthesis under adverse conditions. Recent reports show an important role of redox-based dithiol–disulphide interchanges, mediated both by classical and atypical chloroplast thioredoxins (TRXs), in the control of these photoprotective mechanisms. Moreover, membrane-anchored TRX-like proteins, such as HCF164, which transfer electrons from stromal TRXs to the thylakoid lumen, play a key role in the regulation of lumenal targets depending on the stromal redox poise. Interestingly, not all photoprotective players were reported to be under the control of TRXs. In this review, we discuss recent findings regarding the mechanisms that allow an appropriate electron flux to avoid the detrimental consequences of photosynthesis redox imbalances.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación PID2020-115156GB-I00, PGC2018-096851-B-C21es
dc.formatapplication/pdfes
dc.format.extent17 p.es
dc.language.isoenges
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)es
dc.relation.ispartofAntioxidants, 10 (11), 1789.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCyclic electron flow (CEF)es
dc.subjectFerredoxin/PGR5/PGRL1-dependent plastoquinone reductase (PGR5/PGRL1)es
dc.subjectNADH dehydrogenase-like complex (NDH)es
dc.subjectNADPH thioredoxin reductase C (NTRC)es
dc.subjectNon-photochemical quenching (NPQ)es
dc.subjectPhotosynthesises
dc.subjectRedoxes
dc.subjectThioredoxins (TRX)es
dc.titleCurrent knowledge on mechanisms preventing photosynthesis redox imbalance in plantses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Bioquímica Vegetal y Biología Moleculares
dc.relation.projectIDPID2020-115156GB-I00es
dc.relation.projectIDPGC2018-096851-B-C21es
dc.relation.publisherversionhttps://doi.org/10.3390/antiox10111789es
dc.identifier.doi10.3390/antiox10111789es
dc.journaltitleAntioxidantses
dc.publication.volumen10es
dc.publication.issue11es
dc.publication.initialPage1789es

FicherosTamañoFormatoVerDescripción
Current Knowledge on Mechanisms.pdf1.469MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional