Show simple item record

Article

dc.creatorRuiz-Moreno, Saraes
dc.creatorDomínguez Frejo, José Ramónes
dc.creatorCamacho, Eduardo F.es
dc.date.accessioned2021-10-14T09:17:05Z
dc.date.available2021-10-14T09:17:05Z
dc.date.issued2021-12
dc.identifier.citationRuiz-Moreno, S., Frejo, J.R. y Camacho, E. F. (2021). Model predictive control based on deep learning for solar parabolic-trough plants. Renewable Energy, 180, 193-202.
dc.identifier.issn1879-0682es
dc.identifier.issn0960-1481es
dc.identifier.urihttps://hdl.handle.net/11441/126565
dc.description.abstractIn solar parabolic-trough plants, the use of Model Predictive Control (MPC) increases the output thermal power. However, MPC has the disadvantage of a high computational demand that hinders its application to some processes. This work proposes using artificial neural networks to approximate the optimal flow rate given by an MPC controller to decrease the computational load drastically to a 3% of the MPC computation time. The neural networks have been trained using a 30-day synthetic dataset of a collector field controlled by MPC. The use of a different number of measurements as inputs to the network has been analyzed. The results show that the neural network controllers provide practically the same mean power as the MPC controller with differences under 0.02 kW for most neural networks, less abrupt changes at the output and slight violations of the constraints. Moreover, the proposed neural networks perform well, even using a low number of sensors and predictions, decreasing the number of neural network inputs to 10% of the original size.es
dc.description.sponsorshipEuropean Research Council. Advanced Grant OCONTSOLAR number789051es
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades IJC2018-035395-Ies
dc.formatapplication/pdfes
dc.format.extent10 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofRenewable Energy, 180, 193-202.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSolar energyes
dc.subjectModel predictive controles
dc.subjectParabolic-trough collectores
dc.subjectArtificial intelligencees
dc.titleModel predictive control based on deep learning for solar parabolic-trough plantses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería de Sistemas y Automáticaes
dc.relation.projectIDIJC2018-035395-Ies
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0960148121012180es
dc.identifier.doi10.1016/j.renene.2021.08.058es
dc.contributor.groupUniversidad de Sevilla. TEP116: Automática y Robótica Industriales
idus.validador.notaSubido a idUS a petición de Ruiz - Moreno, Sara (Oct. 2021)es
dc.journaltitleRenewable Energyes
dc.publication.volumen180es
dc.publication.initialPage193es
dc.publication.endPage202es

FilesSizeFormatViewDescription
RE_Ruiz-Moreno_2021_OA_model.pdf523.1KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional