Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
A Wide Class of Ultrabornological Spaces of Measurable Functions
Autor/es | Díaz Madrigal, Santiago
Florencio Lora, Miguel Paúl Escolano, Pedro José |
Departamento | Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI) |
Fecha de publicación | 1995 |
Fecha de depósito | 2021-08-12 |
Publicado en |
|
Resumen | Our main result states that a bornological locally convex space having a suitable Boolean algebra of projections is ultrabornological. This general theorem, whose proof is a variation of the sliding-hump techniques used ... Our main result states that a bornological locally convex space having a suitable Boolean algebra of projections is ultrabornological. This general theorem, whose proof is a variation of the sliding-hump techniques used in [Dı́az et al., Arch. Math. (Basel)60 (1993), 73-78; Dı́az et al., Resultate Math.23 (1993), 242-250; Drewnowski el al., Proc. Amer. Math. Sec.114 (1992), 687-694; Drewnowski et al., Atti. Sem. Mat. Fis. Univ. Modena41 (1993), 317-329], is applied to prove that some non-complete normed spaces such as the spaces of Dunford, Pettis, or McShane integrable functions, as well as other interesting spaces of weakly or strongly measurable functions, are ultrabornological. We also give applications to vector-valued sequence spaces; in particular, we prove that ℓp{X} (1 ≤ p < ∞) is an ultrabornological DF-space when X is. |
Cita | Díaz Madrigal, S., Florencio Lora, M. y Paúl Escolano, P.J. (1995). A Wide Class of Ultrabornological Spaces of Measurable Functions. Journal of Mathematical Analysis and Applications, 190 (3), 697-713. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
1-s2.0-S0022247X85711043-main.pdf | 722.7Kb | [PDF] | Ver/ | |