Article
The maximal determinant of cocyclic (−1, 1)-matrices over D2t
Author/s | Álvarez Solano, Víctor
Armario Sampalo, José Andrés Frau García, María Dolores Gudiel Rodríguez, Félix |
Department | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Publication Date | 2012 |
Deposit Date | 2021-06-25 |
Published in |
|
Abstract | Cocyclic construction has been successfully used for Hadamard matrices of order n. These -matrices satisfy that and give the solution to the maximal determinant problem when or a multiple of 4. In this paper, we approach ... Cocyclic construction has been successfully used for Hadamard matrices of order n. These -matrices satisfy that and give the solution to the maximal determinant problem when or a multiple of 4. In this paper, we approach the maximal determinant problem using cocyclic matrices when . More concretely, we give a reformulation of the criterion to decide whether or not the determinant with entries attains the Ehlich-Wojtas’ bound in the -cocyclic framework. We also provide some algorithms for constructing -cocyclic matrices with large determinants and some explicit calculations up to . |
Funding agencies | Junta de Andalucía Ministerio de Ciencia, Innovación y Universidades (MICINN). España |
Project ID. | FQM-016
P07-FQM-02980 MTM2008-06578 |
Citation | Álvarez Solano, V., Armario Sampalo, J.A., Frau García, M.D. y Gudiel Rodríguez, F. (2012). The maximal determinant of cocyclic (−1, 1)-matrices over D2t. Linear Algebra and its Applications, 436 (4), 858-873. |
Files | Size | Format | View | Description |
---|---|---|---|---|
The maximal determinant of ... | 449.3Kb | [PDF] | View/ | |