Mostrar el registro sencillo del ítem

Artículo

dc.creatorCejudo Fernández, Francisco Javieres
dc.creatorGonzález García, María de la Cruzes
dc.creatorPérez Ruiz, Juan Manueles
dc.date.accessioned2021-06-18T13:57:18Z
dc.date.available2021-06-18T13:57:18Z
dc.date.issued2021
dc.identifier.citationCejudo Fernández, F.J., González García, M.d.l.C. y Pérez Ruiz, J.M. (2021). Redox regulation of chloroplast metabolism. Plant Physiology, 186 (1), 9-21.
dc.identifier.issn0032-0889es
dc.identifier.issn1532-2548es
dc.identifier.urihttps://hdl.handle.net/11441/112496
dc.description.abstractRegulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast. © The Author(s) 2020. Published by Oxford University Press on behalf of American Society of Plant Biologists.es
dc.description.sponsorshipMinisterio de Economía y Competitividad BIO2017-85195-C2-1- Pes
dc.formatapplication/pdfes
dc.format.extent13 p.es
dc.language.isoenges
dc.publisherAmerican Society of Plant Biologistses
dc.relation.ispartofPlant Physiology, 186 (1), 9-21.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleRedox regulation of chloroplast metabolismes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Bioquímica Vegetal y Biología Moleculares
dc.relation.projectIDBIO2017-85195-C2-1- Pes
dc.relation.publisherversionhttps://doi.org/10.1093/plphys/kiaa062es
dc.identifier.doi10.1093/plphys/kiaa062es
dc.journaltitlePlant Physiologyes
dc.publication.volumen186es
dc.publication.issue1es
dc.publication.initialPage9es
dc.publication.endPage21es

FicherosTamañoFormatoVerDescripción
Redox regulation of chloroplast ...751.3KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional