Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Generating (co)homological information using boundary scale
Autor/es | Molina Abril, Helena
Real Jurado, Pedro Díaz del Río, Fernando |
Departamento | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores |
Fecha de publicación | 2020 |
Fecha de depósito | 2021-06-18 |
Publicado en |
|
Resumen | In this paper we develop a new computational technique called boundary scale-space theory. This tech- nique is based on the topol1 ogical paradigm consisting of representing a geometric subdivided object K using a one-parameter ... In this paper we develop a new computational technique called boundary scale-space theory. This tech- nique is based on the topol1 ogical paradigm consisting of representing a geometric subdivided object K using a one-parameter family of geometric objects { Ki }i ≥ 1 all of them having the same number of closed pieces than K. Each piece of Ki ( ∀i ≥ 1) presents the same interior part than the corresponding one in K, and a different boundary part depending on the scale i. Working with coefficients in a field, a scale is installed for the algebraic boundary of each piece and a new invariant for cell complex isomorphisms is given in terms of the Betti numbers of the generated boundary-scale-space cell complexes. Moreover, the so called homology boundary scale-space model of K ( hbss -model for short) is introduced here. Thismodel consists of a hierarchical graph whose nodes are the homology generators of the different bound- ary scale levels and whose edges are specified by homology generators of consecutive boundary scaleindices linked by ( hbss -transition maps) preserving homology classes. Various codes for each connectedsubgraph of an hbss -model are defined, which besides being fast and efficient similarity measures for cel- lular structures, they are as well relevant interpretive tools for the hbss -model. Finally, experimentations mainly aimed at clarifying and understanding the notion of hbss -model, as well as conjecturing about new graph isomorphism invariants (seeing graphs as a 1-dimensional cell complexes), are performed. |
Agencias financiadoras | Ministerio de Economía y Competitividad (MINECO). España |
Identificador del proyecto | MTM2016-81030-P
TEC2016-77785-P |
Cita | Molina Abril, H., Real Jurado, P. y Díaz del Río, F. (2020). Generating (co)homological information using boundary scale. Pattern Recognition Letters, 133 (May 2020), 240-246. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Generating (co) homological ... | 1.221Mb | [PDF] | Ver/ | |