Show simple item record

Article

dc.creatorHuang, Zhues
dc.creatorWang, Taoes
dc.creatorLiu, Weies
dc.creatorValencia Cabrera, Luises
dc.creatorPérez Jiménez, Mario de Jesúses
dc.creatorLi, Pengpenges
dc.date.accessioned2021-04-22T09:58:10Z
dc.date.available2021-04-22T09:58:10Z
dc.date.issued2021
dc.identifier.citationHuang, Z., Wang, T., Liu, W., Valencia Cabrera, L., Pérez Jiménez, M.d.J. y Li, P. (2021). A Fault Analysis Method for Three-Phase Induction Motors Based on Spiking Neural P Systems. Complexity, 2021 (Article ID 2087027)
dc.identifier.issn1076-2787es
dc.identifier.urihttps://hdl.handle.net/11441/107559
dc.description.abstractThe fault prediction and abductive fault diagnosis of three-phase induction motors are of great importance for improving their working safety, reliability, and economy; however, it is difficult to succeed in solving these issues. This paper proposes a fault analysis method of motors based on modified fuzzy reasoning spiking neural P systems with real numbers (rMFRSNPSs) for fault prediction and abductive fault diagnosis. To achieve this goal, fault fuzzy production rules of three-phase induction motors are first proposed. Then, the rMFRSNPS is presented to model the rules, which provides an intuitive way for modelling the motors. Moreover, to realize the parallel data computing and information reasoning in the fault prediction and diagnosis process, three reasoning algorithms for the rMFRSNPS are proposed: the pulse value reasoning algorithm, the forward fault prediction reasoning algorithm, and the backward abductive fault diagnosis reasoning algorithm. Finally, some case studies are given, in order to verify the feasibility and effectiveness of the proposed method.es
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad TIN2017-89842-P (MABICAP)es
dc.formatapplication/pdfes
dc.format.extent19es
dc.language.isoenges
dc.publisherHindawies
dc.relation.ispartofComplexity, 2021 (Article ID 2087027)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA Fault Analysis Method for Three-Phase Induction Motors Based on Spiking Neural P Systemses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificiales
dc.relation.projectIDTIN2017-89842-P (MABICAP)es
dc.relation.publisherversionhttps://www.hindawi.com/journals/complexity/2021/2087027/es
dc.identifier.doi10.1155/2021/2087027es
dc.contributor.groupUniversidad de Sevilla. TIC193: Computación Naturales
dc.journaltitleComplexityes
dc.publication.volumen2021es
dc.publication.issueArticle ID 2087027es
dc.contributor.funderMinisterio de Economia, Industria y Competitividad (MINECO). Españaes

FilesSizeFormatViewDescription
A Fault Analysis Method for ...1.478MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional