dc.creator | Huang, Zhu | es |
dc.creator | Wang, Tao | es |
dc.creator | Liu, Wei | es |
dc.creator | Valencia Cabrera, Luis | es |
dc.creator | Pérez Jiménez, Mario de Jesús | es |
dc.creator | Li, Pengpeng | es |
dc.date.accessioned | 2021-04-22T09:58:10Z | |
dc.date.available | 2021-04-22T09:58:10Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Huang, Z., Wang, T., Liu, W., Valencia Cabrera, L., Pérez Jiménez, M.d.J. y Li, P. (2021). A Fault Analysis Method for Three-Phase Induction Motors Based on Spiking Neural P Systems. Complexity, 2021 (Article ID 2087027) | |
dc.identifier.issn | 1076-2787 | es |
dc.identifier.uri | https://hdl.handle.net/11441/107559 | |
dc.description.abstract | The fault prediction and abductive fault diagnosis of three-phase induction motors are of great importance for improving their working
safety, reliability, and economy; however, it is difficult to succeed in solving these issues. This paper proposes a fault analysis method of
motors based on modified fuzzy reasoning spiking neural P systems with real numbers (rMFRSNPSs) for fault prediction and abductive
fault diagnosis. To achieve this goal, fault fuzzy production rules of three-phase induction motors are first proposed. Then, the rMFRSNPS
is presented to model the rules, which provides an intuitive way for modelling the motors. Moreover, to realize the parallel data computing
and information reasoning in the fault prediction and diagnosis process, three reasoning algorithms for the rMFRSNPS are proposed: the
pulse value reasoning algorithm, the forward fault prediction reasoning algorithm, and the backward abductive fault diagnosis reasoning
algorithm. Finally, some case studies are given, in order to verify the feasibility and effectiveness of the proposed method. | es |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad TIN2017-89842-P (MABICAP) | es |
dc.format | application/pdf | es |
dc.format.extent | 19 | es |
dc.language.iso | eng | es |
dc.publisher | Hindawi | es |
dc.relation.ispartof | Complexity, 2021 (Article ID 2087027) | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | A Fault Analysis Method for Three-Phase Induction Motors Based on Spiking Neural P Systems | es |
dc.type | info:eu-repo/semantics/article | es |
dcterms.identifier | https://ror.org/03yxnpp24 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.contributor.affiliation | Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial | es |
dc.relation.projectID | TIN2017-89842-P (MABICAP) | es |
dc.relation.publisherversion | https://www.hindawi.com/journals/complexity/2021/2087027/ | es |
dc.identifier.doi | 10.1155/2021/2087027 | es |
dc.contributor.group | Universidad de Sevilla. TIC193: Computación Natural | es |
dc.journaltitle | Complexity | es |
dc.publication.volumen | 2021 | es |
dc.publication.issue | Article ID 2087027 | es |
dc.contributor.funder | Ministerio de Economia, Industria y Competitividad (MINECO). España | es |