Ponencia
Synthetizing Qualitative (Logical) Patterns for Pedestrian Simulation from Data
Autor/es | Aranda Corral, Gonzalo A.
Borrego Díaz, Joaquín Galán Páez, Juan |
Departamento | Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial |
Fecha de publicación | 2016 |
Fecha de depósito | 2021-03-26 |
Publicado en |
|
ISBN/ISSN | 978-3-319-56990-1 2367-3370 |
Resumen | This work introduces a (qualitative) data-driven framework
to extract patterns of pedestrian behaviour and synthesize Agent-Based
Models. The idea consists in obtaining a rule-based model of pedestrian
behaviour by means ... This work introduces a (qualitative) data-driven framework to extract patterns of pedestrian behaviour and synthesize Agent-Based Models. The idea consists in obtaining a rule-based model of pedestrian behaviour by means of automated methods from data mining. In order to extract qualitative rules from data, a mathematical theory called Formal Concept Analysis (FCA) is used. FCA also provides tools for implicational reasoning, which facilitates the design of qualitative simulations from both, observations and other models of pedestrian mobility. The robustness of the method on a general agent-based setting of movable agents within a grid is shown. |
Agencias financiadoras | Ministerio de Economía y Competitividad (MINECO). España |
Identificador del proyecto | TIN2013-41086-P |
Cita | Aranda Corral, G.A., Borrego Díaz, J. y Galán Páez, J. (2016). Synthetizing Qualitative (Logical) Patterns for Pedestrian Simulation from Data. En IntelliSys 2016: SAI Intelligent Systems Conference (243-260), London, UK: Springer. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Aranda-Corral2018_Chapter_Synt ... | 2.366Mb | [PDF] | Ver/ | |