Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Ponencia
Optimizations in CuSNP Simulator for Spiking Neural P Systems on CUDA GPUs
Autor/es | Aboy, Blaine Corwyn D.
Bariring, Edward James A. Carandang, Jym Paul Cabarle, Francis George C. Cruz, Ren Tristan de la Adorna, Henry N. Martínez del Amor, Miguel Ángel |
Departamento | Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial |
Fecha de publicación | 2019 |
Fecha de depósito | 2021-03-23 |
Publicado en |
|
ISBN/ISSN | 978-1-7281-4484-9 |
Resumen | Spiking Neural P systems (in short, SNP systems)
are computing models based on living neurons. SNP systems are
non-deterministic and parallel, hence making use of a parallel
processor such as a graphics processing unit ... Spiking Neural P systems (in short, SNP systems) are computing models based on living neurons. SNP systems are non-deterministic and parallel, hence making use of a parallel processor such as a graphics processing unit (in short, GPU) is a natural candidate for simulations. Matrix representations and algorithms were previously developed for simulating SNP systems. In this work, our two results extend previous works in simulating SNP systems in the GPU: (a) the number of neurons the simulator can handle is now arbitrary; (b) SNP systems are now represented in a dense instead of sparse way. The impact in terms of time and space of these extensions to the GPU simulator are analysed. As expected, SNP systems with more neurons need more simulation time, although the simulator performance can scale (i.e. perform better) with larger GPUs. The dense representation helps in the simulation of larger systems. |
Agencias financiadoras | Ministerio de Economia, Industria y Competitividad (MINECO). España |
Identificador del proyecto | TIN2017- 89842-P (MABICAP) |
Cita | Aboy, B.C.D., Bariring, E.J.A., Carandang, J.P., Cabarle, F.G.C., Cruz, R.T.d.l., Adorna, H.N. y Martínez del Amor, M.Á. (2019). Optimizations in CuSNP Simulator for Spiking Neural P Systems on CUDA GPUs. En HPCS 2019: International Conference on High Performance Computing and Simulation (535-542), Dublin, Ireland: IEEE Computer Society. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Optimizations in CuSNP Simulator ... | 208.5Kb | [PDF] | Ver/ | |