Mostrar el registro sencillo del ítem

Artículo

dc.contributor.editorBöyükata, Mahmutes
dc.creatorBöyükata, Mahmutes
dc.creatorAlonso Alonso, Clara Eugeniaes
dc.creatorArias Carrasco, José Migueles
dc.creatorFortunato, L.es
dc.creatorVitturi, Andreaes
dc.date.accessioned2021-02-09T12:41:39Z
dc.date.available2021-02-09T12:41:39Z
dc.date.issued2021-01
dc.identifier.citationBöyükata, M., Alonso Alonso, C.E., Arias Carrasco, J.M., Fortunato, L. y Vitturi, A. (2021). Review of Shape Phase Transition Studies for Bose-Fermi Systems: The Effect of the Odd-Particle on the Bosonic Core. Symmetry, 13 (2), 215.
dc.identifier.issn2073-8994es
dc.identifier.urihttps://hdl.handle.net/11441/104787
dc.description.abstractThe quantum phase transition studies we have done during the last few years for odd-even systems are reviewed. The focus is on the quantum shape phase transition in Bose-Fermi systems. They are studied within the Interacting Boson-Fermion Model (IBFM). The geometry is included in this model by using the intrinsic frame formalism based on the concept of coherent states. First, the critical point symmetries E(5/4) and E(5/12) are summarized. E(5/4) describes the case of a single j = 3/2 particle coupled to a bosonic core that undergoes a transition from spherical to γ-unstable. E(5/12) is an extension of E(5/4) that describes the multi-j case (j = 1/2, 3/2, 5/2) along the same transitional path. Both, E(5/4) and E(5/12), are formulated in a geometrical context using the Bohr Hamiltonian. Similar situations can be studied within the IBFM considering the transitional path from UBF(5) to OBF(6). Such studies are also presented. No critical points have been proposed for other paths in odd-even systems as, for instance, the transition from spherical to axially deformed shapes. However, the study of such shape phase transition can be done easily within the IBFM considering the path from UBF(5) (spherical) to SUBF(3) (axial deformed). Thus, in a second part, this study is presented for the multi-j case. Energy levels and potential energy surfaces obtained within the intrinsic frame formalism of the IBFM Hamiltonian are discussed. Finally, our recent works within the IBFM for a single-j fermion coupled to a bosonic core that performs different shape phase transitional paths are reviewed. All significant paths in the model space are studied: from spherical to γ-unstable shape, from spherical to axially deformed (prolate and oblate) shapes, and from prolate to oblate shape passing through the γ-unstable shape. The aim of these applications is to understand the effect of the coupled fermion on the core when moving along a given transitional path and how the coupled fermion modifies the bosonic core around the critical points.es
dc.description.sponsorshipConsejo de Investigación Científica y Técnica de Turquía (TÜB˙ITAK)-119T127es
dc.description.sponsorshipUnidad de Coordinación de Proyectos de Investigación Científica de la Universidad de Kırıkkale-2016/001-351 y 2019/040es
dc.description.sponsorshipConsejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (España)-FQM-160es
dc.description.sponsorshipMinisterio de Ciencia e Innovación de España -FIS2017-88410-P y PID2019-104002GB-C22es
dc.description.sponsorshipComisión Europea-H2020-INFRAIA-2014-2015 (ENSAR 2)es
dc.formatapplication/pdfes
dc.format.extent26 p.es
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofSymmetry, 13 (2), 215.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectnuclear structure models and methodses
dc.subjectcollective modelses
dc.subjectmodels based on group theoryes
dc.titleReview of Shape Phase Transition Studies for Bose-Fermi Systems: The Effect of the Odd-Particle on the Bosonic Corees
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Atómica, Molecular y Nucleares
dc.relation.projectIDTÜB˙ITAK)-119T127es
dc.relation.projectID2016/001-351es
dc.relation.projectID2019/040es
dc.relation.projectIDFQM-160es
dc.relation.projectIDFIS2017-88410-Pes
dc.relation.projectIDPID2019-104002GB-C22es
dc.relation.projectIDH2020-INFRAIA-2014-2015 (ENSAR 2)es
dc.relation.publisherversionhttps://doi.org/10.3390/sym13020215es
dc.identifier.doi10.3390/sym13020215es
dc.contributor.groupUniversidad de Sevilla. FQM160: Fisica Nuclear Basicaes
dc.journaltitleSymmetryes
dc.publication.volumen13es
dc.publication.issue2es
dc.publication.initialPage215es
dc.contributor.funderConsejo de Investigación Científica y Técnica de Turquía (TÜB˙ITAK)es
dc.contributor.funderUniversidad de Kırıkkale. Turquíaes
dc.contributor.funderJunta de Andalucíaes
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es

FicherosTamañoFormatoVerDescripción
symmetry-13-00215-v2.pdf8.569MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional