idUS
Depósito de Investigación
Universidad de Sevilla
| | | BUS |
  • Español
Login | Contact | Help | Biblioteca USBUS |
  • Español
 
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of idUSCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsFunding agenciesAward-winning thesesAuthor profiles USThis CollectionBy Issue DateAuthorsTitlesSubjectsFunding agencies
My AccountLoginRegisterDeposit your workApplication to deposit in idUSRequest the deposit to the LibraryMore info
StatisticsGeneral statisticsView Usage Statistics
PoliciesInstitutional statementBerlin DeclarationidUS Policies
Recolecta
LA ReferenciaOpenAIRE
HispanaEuropeana
Google AcadémicoBase
OAIsterCORE
DART-Europe E-theses PortalOpenDOAR
DulcineaSherpa/Romeo
re3data.orgfairsharing.org
 
View Item 
  •   idUS
  • Investigación
  • Ingeniería y Arquitectura
  • Lenguajes y Sistemas Informáticos
  • Artículos (Lenguajes y Sistemas Informáticos)
  • View Item
  •   idUS
  • Investigación
  • Ingeniería y Arquitectura
  • Lenguajes y Sistemas Informáticos
  • Artículos (Lenguajes y Sistemas Informáticos)
  • View Item

Article

Acceso restringido
Real-time gun detection in CCTV: An open problem

Author/sSalazar González, Jose Luis            
Zaccaro, Carlos  
Álvarez García, Juan Antonio                
Soria Morillo, Luis Miguel                
Sancho Caparrini, Fernando                
EditorÁlvarez García, Juan Antonio                
DepartmentUniversidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Date2020-12
Published in Neural Networks, 132 (December 2020), 297-308.
AbstractObject detectors have improved in recent years, obtaining better results and faster inference time. However, small object detection is still a problem that has not yet a definitive solution. The autonomous weapons detection ...
Object detectors have improved in recent years, obtaining better results and faster inference time. However, small object detection is still a problem that has not yet a definitive solution. The autonomous weapons detection on Closed-circuit television (CCTV) has been studied recently, being extremely useful in the field of security, counter-terrorism, and risk mitigation. This article presents a new dataset obtained from a real CCTV installed in a university and the generation of synthetic images, to which Faster R-CNN was applied using Feature Pyramid Network with ResNet-50 resulting in a weapon detection model able to be used in quasi real-time CCTV (90 ms of inference time with an NVIDIA GeForce GTX-1080Ti card) improving the state of the art on weapon detection in a two stages training. In this work, an exhaustive experimental study of the detector with these datasets was performed, showing the impact of synthetic datasets on the training of weapons detection systems, as well as the main limitations that these systems present nowadays. The generated synthetic dataset and the real CCTV dataset are available to the whole research community.
Funding agenciesMinisterio de Economía y Competitividad (MINECO). España
Project ID.TIN2017-82113-C2-1-R  openaire
CitationSalazar González, J.L., Zaccaro, C., Álvarez García, J.A., Soria Morillo, L.M. y Sancho Caparrini, F. (2020). Real-time gun detection in CCTV: An open problem. Neural Networks, 132 (December 2020), 297-308.
10.1016/j.neunet.2020.09.013

Web of Science :  
 :  
  View Usage Statistics
 
Show full item record
FilesSizeFormatViewDescription
Real-time gun detection in CCTV- ...8.154MbIcon   [PDF] View/Open   Preprint
Logo Handlehttps://hdl.handle.net/11441/101429
DOIhttps://doi.org/10.1016/j.neunet.2020.09.013
  Editor´s version

This item appears in the following collection(s)
  • Artículos (Ciencias de la Computación e Inteligencia Artificial)
  • Artículos (Lenguajes y Sistemas Informáticos)

  • About idUS
  • Deposit your work
  • Services
  • Distribution License
  • FAQS
  • idUS in figures
Universidad de Sevilla
  • idUS is a DSpace implementation and is managed by Biblioteca de la Universidad de Sevilla.
  • Last update: 2 March 2023.
Contact  |  Help
The content of idUS is protected by Creative Commons 4.0 Internacional Licenses.
Creative Commons LicensesLevel AA conformance, W3C WAI Web Content Accessibility Guidelines 2.0Logo CrueLogo Handle
Copyright © 2015. idUS. Depósito de Investigación de la Universidad de Sevilla.
     

     

    This website only uses cookies for technical purposes, it does not receive or transfer personal data from users without their consent.  More information.

    Accept