Mostrar el registro sencillo del ítem

Artículo

dc.creatorHoracek, J.es
dc.creatorPitts, R.A.es
dc.creatorAdamek, J.es
dc.creatorArnoux, G.es
dc.creatorBak, J.G.es
dc.creatorJet Contributorses
dc.creatorGarcía Muñoz, Manueles
dc.date.accessioned2020-08-27T14:44:18Z
dc.date.available2020-08-27T14:44:18Z
dc.date.issued2016-07
dc.identifier.citationHoracek, J., Pitts, R.A., Adamek, J., Arnoux, G., Bak, J.G., Jet Contributors, y García Muñoz, M. (2016). Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas. Contributions to Plasma Physics, 58 (7), 074005-.
dc.identifier.issn0741-3335es
dc.identifier.urihttps://hdl.handle.net/11441/100501
dc.description.abstractAs in many of today’s tokamaks, plasma start-up in ITER will be performed in limiter configuration on either the inner or outer midplane first wall (FW). The massive, beryllium armored ITER FW panels are toroidally shaped to protect panel-to-panel misalignments, increasing the deposited power flux density compared with a purely cylindrical surface. The chosen shaping should thus be optimized for a given radial profile of parallel heat flux, q in the scrape-off layer (SOL) to ensure optimal power spreading. For plasmas limited on the outer wall in tokamaks, this profile is commonly observed to decay exponentially as q q = − exp ( / r λ ) 0 q omp , or, for inner wall limiter plasmas with the double exponential decay comprising a sharp near-SOL feature and a broader main SOL width, λq omp. The initial choice of λq omp , which is critical in ensuring that current ramp-up or down will be possible as planned in the ITER scenario design, was made on the basis of an extremely restricted L-mode divertor dataset, using infra-red thermography measurements on the outer divertor target to extrapolate to a heat flux width at the main plasma midplane. This unsatisfactory situation has now been significantly improved by a dedicated multi-machine ohmic and L-mode limiter plasma study, conducted under the auspices of the International Tokamak Physics Activity, involving 11 tokamaks covering a wide parameter range with R = = 0.4–2.8 m, 1 B I 0 p .2–7.5 T, = 9–2500 kA. Measurements of λq omp in the database are made exclusively on all devices using a variety of fast reciprocating Langmuir probes entering the plasma at a variety of poloidal locations, but with the majority being on the low field side. Statistical analysis of the database reveals nine reasonable engineering and dimensionless scalings. All yield, however, similar predicted values of λq omp mapped to the outside midplane. The engineering scaling with the highest statistical significance, λ = ( / ( )) ( / /κ) − − q 10 P V W m a R omp tot 3 0.38 1.3 , dependent on input power density, aspect ratio and elongation, yields λq omp = [7, 4, 5] cm for Ip = [2.5, 5.0, 7.5] MA, the three reference limiter plasma currents specified in the ITER heat and nuclear load specifications. Mapped to the inboard midplane, the worst case (7.5 MA) corresponds to λq ~ 57 1 ± 4 imp mm, thus consolidating the 50mm width used to optimize the FW panel toroidal shape.es
dc.description.sponsorshipEURATOM 633053es
dc.description.sponsorshipCzech Science Foundation GA CR P205/12/2327, GA15-10723S, MSMT LM2011021es
dc.description.sponsorshipUS Department of Energy DE-FG02- 07ER54917, DE-AC02-09CH11466, DE-FC02-04ER54698es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherIOP Publishinges
dc.relation.ispartofContributions to Plasma Physics, 58 (7), 074005-.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTokamakes
dc.subjectITERes
dc.subjectSOL decay lengthes
dc.subjectSOL widthes
dc.subjectScalinges
dc.titleMulti-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmases
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Atómica, Molecular y Nucleares
dc.relation.projectID633053es
dc.relation.projectIDGA CR P205/12/2327es
dc.relation.projectIDGA15-10723Ses
dc.relation.projectIDMSMT LM2011021es
dc.relation.projectIDDE-FG02- 07ER54917es
dc.relation.projectIDDE-AC02-09CH11466es
dc.relation.projectIDDE-FC02-04ER54698es
dc.relation.publisherversionhttp://dx.doi.org/10.1088/0741-3335/58/7/074005es
dc.identifier.doi10.1088/0741-3335/58/7/074005es
dc.contributor.groupUniversidad de Sevilla. RNM138: Física Nuclear Aplicadaes
dc.journaltitleContributions to Plasma Physicses
dc.publication.volumen58es
dc.publication.issue7es
dc.publication.initialPage074005es

FicherosTamañoFormatoVerDescripción
Horacek_2016_Plasma_Phys._Cont ...2.292MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional