Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Mineral carbonation of ceramic brick at low pressure and room temperature. A simulation study for a superficial CO2 store using a common clay as sealing material
Autor/es | Martín García, Domingo
Aparicio Fernández, Patricia Galán Huertos, Emilio |
Departamento | Universidad de Sevilla. Departamento de Cristalografía, Mineralogía y Química Agrícola |
Fecha de publicación | 2018-09-01 |
Fecha de depósito | 2020-04-20 |
Publicado en |
|
Resumen | This research explores the possibilities of CO2 sequestration on ceramic bricks in a short time and at surface conditions. The experiment was carried out in a specially designed reaction chamber, filled with brick wastes ... This research explores the possibilities of CO2 sequestration on ceramic bricks in a short time and at surface conditions. The experiment was carried out in a specially designed reaction chamber, filled with brick wastes and sealed with common clays. The brick used were composed of quartz, wollastonite, diopside, orthoclase and anhydrite, and the common clay was a marl composed of calcite, quartz, illite, smectite and kaolinite. Experimental condition in the reaction chamber were: reaction time 5 months, pressure of CO2 0.5 bar, 4:1 solid/water ratio. The experiment was followed by XRD, XRF, BET, physical sorption by N2 and CO2, Hg porosity, TG-DTA, SEM and ICP-EOS. After the CO2 treatment, wollastonite and anhydrite were practically destroyed and some diopside and orthoclase. Calcite precipitated as new phase (up to 48 wt%), and small amount of illite was the result of orthoclase alteration. Concerning the sealing clay, the CO2 produced an increment of calcite content (from 32 to 41 wt%) and a partial destruction of smectite, particularly close to the upper part of the brick layer. These results are hopeful in relation with the possible mineral carbonation of building ceramic waste in a short time at surface conditions, and open the opportunity to use those wastes for CO2 trapping in an appropriate system, as a quarry reclamation. |
Agencias financiadoras | Junta de Andalucía |
Identificador del proyecto | P12-RNM-568 |
Cita | Martín García, D., Aparicio Fernández, P. y Galán Huertos, E. (2018). Mineral carbonation of ceramic brick at low pressure and room temperature. A simulation study for a superficial CO2 store using a common clay as sealing material. Applied Clay Science, 161, 119-126. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Martin et al 2018 AppClaySci.pdf | 2.876Mb | [PDF] | Ver/ | |