Geometría y Topología
URI permanente para esta comunidadhttps://hdl.handle.net/11441/10883
Examinar
Examinando Geometría y Topología por Autor "Blair, David E."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Artículo Generalized Sasakian-space-forms(Springer, 2004-12-01) Alegre Rueda, Pablo Sebastián; Blair, David E.; Carriazo Rubio, Alfonso; Universidad de Sevilla. Departamento de Geometría y Topología; Universidad de Sevilla. FQM327: Geometria (Semi) Riemanniana y AplicacionesGeneralized Sasakian-space-forms are introduced and studied. Many examples of these manifolds are presented, by using some different geometric techniques such as Riemannian submersions, warped products or conformal and related transformations. New results on generalized complex-space-forms are also obtained.Ponencia On generalized Sasakian-space-forms(2004) Carriazo Rubio, Alfonso; Blair, David E.; Alegre Rueda, Pablo Sebastián; Universidad de Sevilla. Departamento de Geometría y Topología; Universidad de Sevilla. FQM327: Geometría (Semi) Riemanniana y AplicacionesWe study contact metric and trans-Sasakian generalized Sasakian-space-forms. We also give some interesting examples of generalized Sasakian-space-forms by using warped products and conformal changes of metric.Artículo The contact Whitney sphere(Università del Salento, 2001) Blair, David E.; Carriazo Rubio, Alfonso; Universidad de Sevilla. Departamento de Geometría y Topología; Junta de Andalucía; Universidad de Sevilla. FQM327: Geometria (Semi) Riemanniana y AplicacionesIn this paper, we introduce the contact Whitney sphere as an imbedding of the n-dimensional unit sphere as an integral submanifold of the standard contact structure on R2n+1. We obtain a general inequality for integral submanifolds in R2n+1, involving both the scalar curvature and the mean curvature, and we use the equality case in order to characterize the contact Whitney sphere. We also study a similar problem for anti-invariant submanifolds of R2n+1, tangent to the structure vector field.